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An Infinite Family of Linear Codes
Supporting 4-Designs

Chunming Tang , Member, IEEE, and Cunsheng Ding , Senior Member, IEEE

Abstract— The question as to whether there exists an infinite
family of near MDS codes holding an infinite family of t-designs
for t ≥ 2 was answered in the recent paper [Infinite families
of near MDS codes holding t-designs, IEEE Trans. Inf. Theory
66(9) (2020)], where an infinite family of near MDS codes holding
an infinite family of 3-designs and an infinite family of near MDS
codes holding an infinite family of 2-designs were presented, but
no infinite family of linear codes holding an infinite family of
4-designs was presented. Hence, the question as to whether there
is an infinite family of linear codes holding an infinite family of
4-designs remains open for 71 years. This paper settles this long-
standing problem by presenting an infinite family of BCH codes
of length 22m+1 +1 over GF(22m+1) holding an infinite family
of 4-(22m+1 +1, 6, 22m −4) designs. This paper also provides
another solution to the first question, as some of the BCH codes
presented in this paper are also near MDS. Moreover, an infinite
family of linear codes holding the spherical geometry design
S(3, 5, 4m +1) is presented. The new direction of searching for
t-designs with elementary symmetric polynomials will be further
advanced.

Index Terms— BCH code, cyclic code, linear code, near MDS
code, t-design.

I. INTRODUCTION

LET P be a set of v ≥ 1 elements, where v is an integer,
and let B be a set of k-subsets of P , where k is a

positive integer with 1 ≤ k ≤ v. Let t be a positive integer
with t ≤ k. The pair D := (P ,B) becomes an incidence
structure when the incidence relation is the set membership.
The incidence structure D = (P ,B) is called a t-(v, k, λ)
design, or simply t-design, if every t-subset of P is contained
in exactly λ elements of B. The elements of P are called
points, and those of B are referred to as blocks. The set
B is called the block set. The number of blocks in B is
usually denoted by b. Let

�P
k

�
denote the set of all k-subsets

of P . Then
�
P ,
�P

k

��
is a k-(v, k, 1) design, which is called
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a complete design. A t-design is called simple if B does not
contain any repeated blocks. This paper considers only simple
t-designs with v > k > t. A t-(v, k, λ) design is referred to
as a Steiner system if t ≥ 2 and λ = 1, and is denoted by
S(t, k, v). From the definition, it follows that the parameters
of a t-(ν, k, λ) design have the following relation:�

ν

t

�
λ =

�
k

t

�
b.

Let C be a [v, κ, d] linear code over GF(q), where κ and
d denote the dimension and minimum distance of C. Let Ai

denote the number of codewords with Hamming weight i in
C for 0 ≤ i ≤ v. The sequence (A0, A1, · · · , Av) of integers
is called the weight distribution of C, and the polynomial�v

i=0 Aiz
i is referred to as the weight enumerator of C. In this

paper, C⊥ denotes the dual code of a linear code C, d⊥ denotes
the minimum distance of C⊥, and (A⊥

0 , A⊥
1 , · · · , A⊥

v ) denotes
the weight distribution of C⊥.

There are different approaches to constructing t-designs. A
coding-theoretic construction of t-designs is as follows. For
each k with Ak �= 0, let Bk(C) denote the set of the supports
of all codewords with Hamming weight k in C, where the
coordinates of a codeword are indexed by (p1, . . . , pv). Let
P(C) = {p1, . . . , pv}. The incidence structure (P(C),Bk(C))
may be a t-(v, k, λ) design for some positive integers t and λ,
which is called a support design of the code C, and is denoted
by Dk(C). In such a case, we say that the codewords of weight
k in C support or hold a t-(v, k, λ) design, and for simplicity,
we say that C supports or holds a t-(v, k, λ) design.

There are three sets of sufficient conditions under which
the incidence structure (P(C),Bk(C)) is a t-design for some
positive integer t. The first set of conditions is described in the
Assmus-Mattson Theorem [1]. The second set of conditions is
documented in a generalised Assmus-Mattson Theorem [20].
The third set of conditions is in terms of the automorphism
group of the code C [12, p. 308].

A number of infinite families of t-designs with t ∈ {2, 3}
have been constructed from this coding-theoretic approach [4].
In [6], the authors solved the 70-year-old open problem as to
whether there exists an infinite family of near MDS codes
supporting an infinite family of t-designs for t ≥ 2 by
presenting an infinite family of near MDS codes over GF(3s)
supporting an infinite family of 3-designs and an infinite
family of near MDS codes over GF(22s) supporting an infinite
family of 2-designs. However, no infinite family of 4-designs
has been produced with this coding approach, though sporadic
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t-designs with t = 4 and t = 5 have been obtained from some
sporadic linear codes. The first linear code supporting t-design
with t ≥ 4 was the [11, 6, 5] ternary Golay code discovered
in 1949 by Golay [11]. This ternary code holds 4-designs, and
its extended code holds a Steiner system S(5, 6, 12) having the
largest strength known. In the past 71 years, some sporadic
linear codes holding 4-designs and 5-designs were discovered
and many infinite families of linear codes supporting 3-designs
were constructed. However, the question as to whether there
is an infinite family of liner codes holding an infinite family
of 4-designs remains open for 71 years, in spite of the recent
breakthrough in [6]. The objective of this paper is to settle
this 71-year-old problem by presenting an infinite family of
near MDS codes over GF(22m+1) holding an infinite family
of 4-(22m+1 +1, 6, 22m−4) designs. In addition, this paper
presents an infinite family of linear codes holding the spherical
geometry design S(3, 5, 1+4m). The new direction of search-
ing for t-designs with elementary symmetric polynomials will
be further advanced.

Since a number of infinite families of linear codes support-
ing an infinite family of 2-designs and 3-designs are known
in the literature [4] and the codes presented in [6] support
only 2-designs and 3-designs, the breakthrough made in [6]
is limited to an open question regarding near MDS codes.
The work of this paper is not incremental, as it presents the
first and unique infinite family of linear codes supporting an
infinite family of 4-designs in the literature. This paper also
gives another solution to the problem solved in [6], as the
codes presented in this paper are also near MDS. Both [6]
and this paper consider BCH codes and near MDS codes and
make use of elementary symmetric polynomials.

II. CYCLIC CODES, BCH CODES, AMDS
CODES AND NMDS CODES

In this section, we recall cyclic codes, BCH codes, almost
MDS codes and near MDS codes, as they will be used later
for constructing a family of 4-designs.

A. Cyclic Codes and BCH Codes

An [n, k, d] code C over GF(q) is said to be
cyclic if the condition (c0, c1, · · · , cn−1) ∈ C implies
(cn−1, c0, c1, · · · , cn−2) ∈ C. In this paper we identify a
vector (c0, c1, · · · , cn−1) ∈ GF(q)n with the polynomial

c0 +c1x+c2x
2 + · · ·+cn−1x

n−1 ∈ GF(q)[x]/(xn−1).

In this way, any code C of length n over GF(q) corresponds
to a subset of the quotient ring GF(q)[x]/(xn−1). A linear
code C is then cyclic if and only if the corresponding subset in
GF(q)[x]/(xn−1) is an ideal of the ring GF(q)[x]/(xn−1).

It is well known that every ideal of GF(q)[x]/(xn−1) is
principal. Let C = �g(x)� be a cyclic code, where g(x) is
monic and has the smallest degree among all the generators
of C. Then this g(x) is unique and called the generator
polynomial of C, and h(x) = (xn−1)/g(x) is called the
parity-check polynomial of C.

We are now ready to recall BCH codes over finite fields.
Let gcd(n, q) = 1. Let m := ordn(q), which is the order of

q modulo n, and let α be a generator of the group GF(qm)∗.
Define β = α(qm−1)/n. Then β is a primitive n-th root of
unity in GF(qm). The minimal polynomial Mβs(x) of βs over
GF(q) is defined to be the monic polynomial of the smallest
degree over GF(q) with βs as a root. It is easy to verify that
this minimal polynomial is given by

Mβs(x) =
	

i∈Cs

(x−βi) ∈ GF(q)[x], (1)

which is clearly irreducible over GF(q).
Let δ be an integer with 2 ≤ δ ≤ n and let h be an integer.

A BCH code over GF(q) with length n and designed distance
δ, denoted by C(q,n,δ,h), is the cyclic code of length n over
GF(q) with generator polynomial

g(q,n,δ,h) = lcm(Mβh(x), Mβh+1 (x), · · · , Mβh+δ−2(x)), (2)

where the least common multiple is computed over GF(q).
When h = 1, the code C(q,n,δ,h) with the generator polyno-

mial in (2) is called a narrow-sense BCH code. If n = qm−1,
then C(q,n,δ,h) is referred to as a primitive BCH code.

BCH codes form a subclass of cyclic codes and have nice
properties. It is known that BCH codes are asymptotically bad.
However, in many cases BCH codes are the best linear codes.
For instance, among all binary cyclic codes of odd length at
most 125 the best cyclic code is always a BCH code except
for two special cases [3, Appendix A]. Some BCH codes are
very popular in engineering. As a subclass of BCH codes,
Reed-Solomon codes have been widely used in communication
devices and consumer electronics. In the past ten years, a lot
of progress on the study of BCH codes has been made (see, for
example, [16]–[19], [25]). In this paper, we will investigate an
important application of BCH codes in combinatorial designs.

It is well known that the extended code C(q,qm−1,δ,1) of
the narrow-sense primitive BCH code C(q,qm−1,δ,1) holds
2-designs, as the permutation automorphism group of the
extended code contains the general affine group as a subgroup
(see, for example, [7] and [4, Chapter 8]). However, it is very
rare that an infinite family of cyclic codes hold an infinite
family of 3-designs. In this paper, we will present an infinite
family of BCH codes holding an infinite family of 4-designs,
which makes a breakthrough in 71 years and shows the beauty
of BCH codes in theory.

B. AMDS Codes and NMDS Codes

An [n, k, n−k+1] linear code is called an MDS code.
An [n, k, n−k] linear code is said to be almost maxi-
mum distance separable (almost MDS or AMDS for short).
A code is said to be near maximum distance separable (near
MDS or NMDS for short) if the code and its dual code
both are almost maximum distance separable. MDS codes do
hold t-designs with very large t. Unfortunately, all t-designs
held in MDS codes are complete and thus trivial. The first
NMDS code was the [11, 6, 5] ternary Golay code discovered
in 1949 by Golay [11]. This ternary code holds 4-designs,
and its extended code holds a Steiner system S(5, 6, 12) with
the largest strength known. The authors of this paper very
recently presented an infinite family of NMDS codes over
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GF(3m) holding an infinite family of 3-designs and an infinite
family of NMDS codes over GF(22m) holding an infinite
family of 2-designs [6]. In this paper, we will present a family
of NMDS codes over GF(22m+1) holding an infinite family
of 4-designs, and a family of NMDS codes over GF(22m)
holding an infinite family of 3-designs.

NMDS codes have nice properties [8]–[10], [23]. In particu-
lar, up to a multiple, there is a natural correspondence between
the minimum weight codewords of an NMDS code C and its
dual C⊥, which follows from the next result [10].

Theorem 1: Let C be an NMDS code. Then for every
minimum weight codeword c in C, there exists, up to a
multiple, a unique minimum weight codeword c⊥ in C⊥ such
that suppt(c)∩suppt(c⊥) = ∅. In particular, C and C⊥ have
the same number of minimum weight codewords.

By Theorem 1, if the minimum weight codewords of an
NMDS code support a t-design, so do the minimum weight
codewords of its dual, and the two t-designs are complemen-
tary of each other.

III. COMBINATORIAL t-DESIGNS FROM ELEMENTARY

SYMMETRIC POLYNOMIALS

The objective of this section is to construct 3-designs
and 4-designs from elementary symmetric polynomials. These
results would play a crucial role in proving that the codes
constructed in the next section support 3-designs or 4-designs.

We define [k] := {1, 2, · · · , k}. The elementary symmetric
polynomial (ESP) of degree � in k variables u1, u2, · · · , uk,
written σk,�, is defined by

σk,�(u1, · · · , uk) =



I⊆[k],|I|=�

	
j∈I

uj . (3)

In commutative algebra, the elementary symmetric polyno-
mials are a type of basic building blocks for symmetric
polynomials, in the sense that any symmetric polynomial can
be expressed as a polynomial in elementary symmetric poly-
nomials. Throughout this section, we use σk,� to abbreviate
σk,�(u1, · · · , uk) when u1, . . . , uk are clear from the context.

Let q = 2m throughout this section. Let Uq+1 be the
subgroup of GF(q2)∗ of order q+1, that is, Uq+1 = {u ∈
GF(q2)∗ : uq+1 = 1}. For any integer k with 1 ≤ k ≤ q+1,
let

�Uq+1
k

�
denote the set of all k-subsets of Uq+1. Define

Bσk,�,q+1 =�
{u1, · · · , uk} ∈

�
Uq+1

k

�
: σk,�(u1, · · · , uk) = 0

�
. (4)

The incidence structure Dσk,�,q+1 = (Uq+1,Bσk,�,q+1) may be
a t-(q+1, k, λ) design for some λ, where Uq+1 is the point
set, and the incidence relation is the set membership. In this
case, we say that the ESP σk,� supports a t-(q+1, k, λ) design.
The ESP σk,� always supports a 1-design, but may not support
2-designs. Define the block sets B0

σ6,3,q+1 and B1
σ6,3,q+1 by

B0
σ6,3,q+1 =

⎧⎪⎪⎨
⎪⎪⎩

{u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1 :
{ui1 , ui2 , ui3 , ui4 , ui5} ∈ Bσ5,2,q+1

for some {i1, i2, · · · , i5} with
1 ≤ i1 < i2 < i3 < i4 < i5 ≤ 6

⎫⎪⎪⎬
⎪⎪⎭ , (5)

and

B1
σ6,3,q+1 = Bσ6,3,q+1 \B0

σ6,3,q+1. (6)

The following three theorems and corollary are the main
results of this section. They show an interesting application of
ESPs in the theory of combinatorial designs.

Theorem 2: Let m ≥ 5 be odd. Then the incidence structure
(Uq+1,Bσ6,3,q+1) is a 4-

�
q+1, 6, q−8

2

�
design, where the

block set Bσ6,3,q+1 is given by (4).
Theorem 3: Let m ≥ 4 be even. Then the incidence

structure (Uq+1,Bσ5,2,q+1) is a Steiner system S(3, 5, q+1),
where the block set Bσ5,2,q+1 is given by (4).

Theorem 4: Let m ≥ 4 be even. Then the incidence struc-
ture (Uq+1,B0

σ6,3,q+1) is a 3-(q+1, 6, 2(q−4)) design, and the

incidence structure (Uq+1,Bσ6,3,q+1) is a 3-
�
q+1, 6, (q−4)2

6

�
design.

The following corollary follows immediately from the
previous theorem.

Corollary 5: Let m ≥ 4 be even. Then the incidence struc-
ture (Uq+1,B1

σ6,3,q+1) is a 3-
�
q+1, 6, (q−4)(q−16)

6

�
design.

From Theorems 2, 3 and 4, one gets

��Bσ5,2,q+1

�� =
�

1
10

�
q+1
3

�
, if m is even,

0, if m is odd,

and

��Bσ6,3,q+1

�� =

�
(q−4)2

120

�
q+1
3

�
, if m is even,

q−8
30

�
q+1
4

�
, if m is odd.

In general, it is difficult to determine
��Bσk,�,q+1

��. It would be
interesting to settle the following problem.

Open Problem 6: Let k, � be two positive integers with
� ≤ k

2 . Determine the cardinality of the block set Bσk,�,q+1

given by (4) for (k, �) �= (6, 3) and (5, 2).
To prove Theorems 2, 3, and 4, we need the following

lemmas. The first one is on quadratic equations over finite
fields of characteristic 2 [15], and is documented below.

Lemma 7: Let f(T ) = T 2+aT +b ∈ GF(q)[T ] be a
polynomial of degree 2. Then

1) f has exactly one root in GF(q) if and only if a = 0;
2) f has exactly two roots in GF(q) if and only if a �= 0

and Trq/2

�
b

a2

�
= 0; and

3) f has exactly two roots in GF(q2)\GF(q) if and only
if a �= 0 and Trq/2

�
b
a2

�
= 1.

Lemma 8: Let {u1, u2} ∈
�
Uq+1

2

�
. Then u1u2

u2
1+u2

2
∈ GF(q)

and Trq/2

�
u1u2

u2
1+u2

2

�
= 1.

Proof: Let a = u1u2
u2
1+u2

2
. Then aq = u−1

1 u−1
2

u−2
1 +u−2

2
= a. Thus

a ∈ GF(q). Note that 1
a = u+ 1

u , where u = u1
u2

∈ Uq+1. One
has

(au)2 +(au)+a2 = 0, (7)

where au ∈ GF(q2)\GF(q). Hence, the equation T 2+T +
a2 = 0 has two roots in GF(q2)\GF(q). It then follows from
Lemma 7 that Trq/2(a) = Trq/2(a2) = 1. This completes the
proof.
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Lemma 9: Let {u1, u2, u3, u4} ∈
�
Uq+1

4

�
. Then we have the

following.

1) u1 +u2 +u3 +u4 �= 0.
2) If m is even, then u1 +u2 +u3 �= 0.

Proof: Suppose that u1 +u2+u3 +u4 = 0. We have then

1
u1

+
1
u2

+
1
u3

+
1
u4

= (u1 +u2 +u3 +u4)q = 0.

It follows from u4 = u1 +u2 +u3 that

1
u1

+
1
u2

+
1
u3

+
1

u1 +u2 +u3
= 0.

Multiplying both sides of the previous equation by
u1u2u3(u1 +u2+u3) yields

(u1 +u2 +u3)(u1u2 +u2u3 +u3u1)+u1u2u3 = 0,

which is the same as

(u1 +u2)(u2 +u3)(u3 +u1) = 0,

which is contrary to our assumption that u1, u2, u3 are pair-
wise distinct. Thus, u1 +u2 +u3 +u4 �= 0.

Let m be even. Suppose that u1 +u2 +u3 = 0. Then
1

u1+u2
= 1

u3
= 1

u1
+ 1

u2
= u1+u2

u1u2
. We then have u2

1 +u1u2 +
u2

2 = 0. Thus, u3
1 = u3

2. Since m is even, gcd(3, q+1) = 1.
It then follows from u3

1 = u3
2 that u1 = u2, which is contrary

to our assumption that u1 �= u2. This completes the proof.
Lemma 10: Let σ3,1, σ3,2, σ3,3 be the ESPs given by (3)

with {u1, u2, u3} ∈
�
Uq+1

3

�
. Then

1) σ3,1σ3,2 +σ3,3 = (u1 +u2)(u2 +u3)(u3 +u1).
2) σ3,1σ3,2 +σ3,3 �= 0.
3) σ2

3,2 +σ3,1σ3,3 = σ2
3,3

�
σ2

3,1 +σ3,2

�q
.

Proof: The proofs are straightforward and omitted.
Lemma 11: Let m be even. Let σ3,1, σ3,2, σ3,3 be the ESPs

given by (3) with {u1, u2, u3} ∈
�
Uq+1

3

�
. Then

1) σ2
3,1 +σ3,2 �= 0; and

2) σ2
3,2 +σ3,1σ3,3 �= 0.

Proof: Suppose that σ2
3,1 +σ3,2 = 0, that is

u2
1 +u2

2 +u2
3 +u1u2 +u2u3 +u3u1 = 0.

Multiplying both sides of the previous equation by
u1 +u2 +u3 yields

u3
1 +u3

2+u3
3 +u1u2u3 = 0.

It then follows that |{u3
1, u

3
2, u

3
3, u1u2u3}| = 3 from Lemma 9,

which is contrary to the assumption that m is even. Combining
Part 1 and Lemma 10 gives Part 2. This completes the
proof.

Lemma 12: Let uj ∈ Uq+1 such that σ5,2 = 0, where
j ∈ {1, 2, 3, 4, 5}. Then�

(σ2
3,1 +σ3,2)(u4 +u5) = σ3,1σ3,2 +σ3,3,

(σ2
3,1 +σ3,2)u4u5 = σ2

3,2 +σ3,1σ3,3,

where σ3,1, σ3,2, σ3,3 and σ5,2 are the ESPs given by (3).
Proof: Observe first that

u4u5 +σ3,1(u4 +u5)+σ3,2 = 0. (8)

Raising to the q-th power both sides of Equation (8) yields

u−1
4 u−1

5 +σq
3,1(u

−1
4 +u−1

5 )+σq
3,2 = 0,

which is the same as

σ3,1u4u5 +σ3,2(u4 +u5)+σ3,3 = 0. (9)

The desired conclusion then follows from Equations (8) and
(9). This completes the proof.

Lemma 13: Let m be even and {u1, u2, u3, u4, u5, u6} ∈
B0

σ6,3,q+1. Let A and A� be two 5-subsets of {u1, u2, u3, u4,
u5, u6} such that A, A� ∈ Bσ5,2,q+1. Then A = A�.

Proof: Suppose that A �= A�. Due to symmetry, let A =
{u1, u2, u3, u4, u5} ∈ Bσ5,2,q+1 and A� = {u1, u2, u3, u4,
u6} ∈ Bσ5,2,q+1. It then follows from Lemma 12 that

(σ2
3,1 +σ3,2)(u4 +u5)

= σ3,1σ3,2 +σ3,3 = (σ2
3,1 +σ3,2)(u4 +u6),

which gives

(σ2
3,1 +σ3,2)(u5 +u6) = 0.

It then follows from Lemma 11 that u5 +u6 = 0, which is
contrary to the assumption that u5 �= u6.

The following result is an immediate consequence of
Lemmas 10, 11 and 12.

Lemma 14: Let {u1, u2, u3} ∈
�
Uq+1

3

�
and u4, u5 ∈ Uq+1

such that σ5,2 = 0. Then none of σ2
3,1 +σ3,2, σ3,1σ3,2 +σ3,3

and σ2
3,2 +σ3,1σ3,3 equals zero, and u4 �= u5.

Lemma 15: Let {u1, u2, u3} ∈
�
Uq+1

3

�
such that (σ2

3,1 +
σ3,2)(σ3,1σ3,2 +σ3,3)(σ2

3,2 +σ3,1σ3,3) �= 0. Put a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b = σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then b ∈ Uq+1,
b

a2 ∈
GF(q) and Trq/2

�
b

a2

�
≡ 1+m (mod 2).

Proof: First, it follows from Part 3 of Lemma 10 that
b ∈ Uq+1. Next, observe that

b

a2
=

u1u2

(u1 +u2)2
+

u2u3

(u2 +u3)2
+

u3u1

(u3 +u1)2
+1. (10)

The desired conclusion then follows from Lemma 8 and
Equation (10). This completes the proof.

Lemma 16: Let the notation and assumption be the same
as in Lemma 15. Let f(u) be the quadratic polynomial u2 +
au+b ∈ GF(q)[u]. Then we have the following.

1) If m is odd, then f has no root in Uq+1 \
�√

b
�

.

2) If m is even, then f has exactly two roots in Uq+1.

Proof: Let m be odd. Suppose that there exists an
u ∈ Uq+1 \

�√
b
�

such that f(u) = 0. Then

�
u√
b

�2

+
a√
b

�
u√
b

�
+1 = 0.

From Lemma 7 and u√
b
∈ Uq+1 \{1} ⊆ GF(q2)\GF(q), we

have that Trq/2

�
b

a2

�
= 1, which is contrary to the result of

Lemma 15.
Let m be even. By Lemmas 7 and 15, there exists u� ∈

GF(q2)\GF(q) such that u�, u�q are exactly the two solutions
of the quadratic equation T 2 + a√

b
T +1 = 0. It’s easily
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checked that u4 =
√

bu� and u5 =
√

bu�q are the two roots
of f . Then the result follows from u�q+1 = 1. This completes
the proof.

Combining Lemmas 14, 12, and 16 gives the following.
Lemma 17: Let m be odd and {u1, u2, u3, u4, u5} ∈�

Uq+1
5

�
. Then σ5,2 �= 0.

Lemma 18: Let m be even and {u1, u2, u3} ∈
�
Uq+1

3

�
. Let

u4, u5 be the two solutions of the quadratic equation u2 +au+
b = 0, where a = σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then

{u1, u2, u3, u4, u5} ∈ Bσ5,2,q+1.

Proof: First, employing Lemmas 10, 11, and 16, we have
that u4, u5 ∈ Uq+1 and u4 �= u5. Using σ5,2 = u4 u5+(u4 +
u5)σ3,1 +σ3,2 and Vieta’s formulas yields

σ5,2 =
σ2

3,2 +σ3,1σ3,3

σ2
3,1 +σ3,2

+
σ3,1σ3,2 +σ3,3

σ2
3,1 +σ3,2

σ3,1 +σ3,2 = 0.

Suppose that u4 = ui and u5 = uj for some i, j ∈ {1, 2, 3}.
By symmetry, let (i, j) = (3, 2). Then

σ5,2 = u3u4 +u2u5 = u2
2 +u2

3 = 0,

which is contrary to the condition u2 �= u3. Thus,
|{u1, u2, u3}∩{u4, u5}| �= 2.

Suppose that |{u1, u2, u3}∩{u4, u5}| = 1. By the sym-
metry of u1, u2, u3, let u5 = u3 and u4 �∈ {u1, u2, u3}.
Then σ5,2(u1, u2, u4, u5, u3) = 0. Note that {u1, u2, u4} ∈�
Uq+1

3

�
and u5 = u3, which is contrary to Lemma 14. Thus,

|{u1, u2, u3}∩{u4, u5}| �= 1. Hence, {u1, u2, u3, u4, u5} ∈�
Uq+1

5

�
. This completes the proof.

Lemma 19: Let {u1, u2, u3, u4} ∈
�
Uq+1

4

�
. Then

σ4,3σ4,1 �= 0 and (σ4,3 +uiσ4,2)(σ4,2 +uiσ4,1) �= 0,
where i ∈ {1, 2, 3, 4}.

Proof: Note that

σ4,3σ4,1 = σ4,4σ
q+1
4,1 .

By Part 1 of Lemma 9, we have σ4,3σ4,1 �= 0.
Note that (σ4,3 +uiσ4,2)(σ4,2 +uiσ4,1) = uiσ4,4(σ4,2 +

uiσ4,1)q+1. We only need to prove that σ4,2 +uiσ4,1 �= 0.
On the contrary, suppose that σ4,2 +uiσ4,1 = 0. Using the
symmetry of u1, u2, u3, u4, choose ui = u4. Then σ3,2 +
u2

4 = u1u2 +u2u3 +u3u1 +u2
4 = 0, which is contrary to

Part 1 of Lemma 9 if u2
4 �∈ {u1u2, u2u3, u3u1}. If u2

4 ∈
{u1u2, u2u3, u3u1}, due to symmetry suppose that u2

4 =
u1u2. It then follows from u1u2 +u2u3 +u3u1 +u2

4 = 0 that
u1 = u2, which contradicts the assumption that u1 �= u2. This
completes the proof.

The following result is a direct consequence of Lemma 19.
Lemma 20: Let {u1, u2, u3, u4} ∈

�
Uq+1

4

�
. Then�

σ4,3
σ4,1

,
σ4,3+uiσ4,2
σ4,2+uiσ4,1

∈ Uq+1, where i ∈ {1, 2, 3, 4}.
Lemma 21: Let {u1, u2, u3, u4} ∈

�
Uq+1

4

�
. Then

σ6,3

�
u1, u2, u3, u4,

�
σ4,3
σ4,1

,
�

σ4,3
σ4,1

�
= 0 and

σ6,3

�
u1, u2, u3, u4,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
, ui

�
= 0,

where i ∈ {1, 2, 3, 4}.

Proof: Set u5 = u6 =
�

σ4,3
σ4,1

. Then

σ6,3 (u1, u2, u3, u4, u5, u6)
= σ4,3 +(u5 +u6)σ4,2 +u5 u6σ4,1

= σ4,3 +u2
5σ4,1

= 0.

Thus, σ6,3

�
u1, u2, u3, u4,

�
σ4,3
σ4,1

,
�

σ4,3
σ4,1

�
= 0.

Choose σ5 = σ4,3+uiσ4,2
σ4,2+uiσ4,1

and σ6 = ui. Then

σ6,3

= σ4,3 +(u5 +u6)σ4,2 +u5 u6σ4,1

= σ4,3 +
�

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
+ui

�
σ4,2 +

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
uiσ4,1

= 0.

This completes the proof.
Lemma 22: Let {u1, u2, u3, u4} ∈

�
Uq+1

4

�
such that

σ5,2(u1, u2, u3, u4, u5) �= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Let S be the subset of Uq+1 given by�

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1, 2, 3, 4

��
{ui : i = 1, 2, 3, 4}

���
σ4,3

σ4,1

�
.

Then |S| = 9.
Proof: First, we prove that

�
σ4,3
σ4,1

�= u4. On the contrary,

suppose that
�

σ4,3
σ4,1

= u4. Then

σ4,1u
2
4 +σ4,3 = 0,

which is the same as

u3
4 +σ3,1u

2
4 +σ3,2u4 +σ3,3 = 0.

Then,

(u4 +u1)(u4 +u2)(u4 +u3) = 0,

which is contrary to the assumption that {u1, u2, u3, u4} ∈�
Uq+1

4

�
. Thus

�
σ4,3
σ4,1

�= u4. By the symmetry of u1, u2, u3, u4,�
σ4,3

σ4,1
�= ui for all i. (11)

Suppose that σ4,3+u4σ4,2
σ4,2+u4σ4,1

= u4. Then u4 =
�

σ4,3
σ4,1

, which

is contrary to Inequality (11). Thus, σ4,3+u4σ4,2
σ4,2+u4σ4,1

�= u4. By the
symmetry of u1, u2, u3, u4,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
�= ui for all i. (12)

Suppose that σ4,3+u4σ4,2
σ4,2+u4σ4,1

= u3. Then σ4,3 +u4σ4,2 +
u3(σ4,2 +u4σ4,1) = 0, which is the same as (u3 +
u4)2(u1 +u2) = 0. This is contrary to our assumption that
{u1, u2, u3, u4} ∈

�
Uq+1

4

�
. Thus, σ4,3+u4σ4,2

σ4,2+u4σ4,1
�= u3. By the

symmetry of u1, u2, u3, u4,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
�= uj for all i �= j. (13)
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Suppose that σ4,3+uiσ4,2
σ4,2+uiσ4,1

=
�

σ4,3
σ4,1

for some i ∈ {1, 2, 3, 4}.

Put u5 =
�

σ4,3
σ4,1

. It follows from Inequality (11) that u5 �∈
{u1, u2, u3, u4}. By Lemma 21, we have�

σ6,3 (u1, u2, u3, u4, u5, ui) = 0,

σ6,3

�
u1, u2, u3, u4, u5,

�
σ4,3
σ4,1

�
= 0.

By the assumption of this lemma, σ5,2(u1, u2, u3, u4, u5) �= 0.
Thus, �

ui = σ5,3
σ5,2

,�
σ4,3
σ4,1

= σ5,3
σ5,2

,

which is contrary to Inequality (11). Hence,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
�=
�

σ4,3

σ4,1
. (14)

Assume that σ4,3+uiσ4,2
σ4,2+uiσ4,1

= σ4,3+ujσ4,2
σ4,2+ujσ4,1

for some i, j ∈
{1, 2, 3, 4}. Put u5 = σ4,3+uiσ4,2

σ4,2+uiσ4,1
. It follows from Inequalities

(12) and (13) that u5 �∈ {u1, u2, u3, u4}. By Lemma 21,
we have �

σ6,3 (u1, u2, u3, u4, u5, ui) = 0,
σ6,3 (u1, u2, u3, u4, u5, uj) = 0.

By the assumption of this lemma, σ5,2(u1, u2, u3, u4, u5) �= 0.
Thus, �

ui = σ5,3
σ5,2

,

uj = σ5,3
σ5,2

.

Then i = j. Hence,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
�= σ4,3 +ujσ4,2

σ4,2 +ujσ4,1
, for i �= j. (15)

The desired conclusion then follows from Inequalities (11),
(12), (13), (14) and (15). This completes the proof.

Lemma 23: Let m be even, and let {u�
1, u

�
2, u

�
3, u

�
4, u

�
5} ∈

Bσ5,2,q+1 and u5, u6 ∈ Uq+1 such that σ6,3(u�
1, u�

2, u�
3, u�

4,
u5, u6) = 0. Then u�

5 ∈ {u5, u6}.
Proof: Suppose that u�

5 �∈ {u5, u6}. By Lemmas 11 and
12, σ5,2(u�

1, u
�
2, u

�
3, u

�
4, u5) �= 0. One has�

σ6,3 (u�
1, u

�
2, u

�
3, u

�
4, u5, u

�
5) = 0,

σ6,3 (u�
1, u

�
2, u

�
3, u

�
4, u5, u6) = 0,

which is the same as⎧⎨
⎩

u�
5 = σ5,3(u′

1,u′
2,u′

3,u′
4,u5)

σ5,2(u′
1,u′

2,u′
3,u′

4,u5) ,

u6 = σ5,3(u′
1,u′

2,u′
3,u′

4,u5)
σ5,2(u′

1,u′
2,u′

3,u′
4,u5) .

This is contrary to our assumption that u�
5 �∈ {u5, u6}. This

completes the proof.
Lemma 24: Let {u1, u2, u3, u4} ∈

�
Uq+1

4

�
such that

σ5,2(u1, u2, u3, u4, u5) �= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Then

σ5,3

�
u1, u2, u3, u4,

�
σ4,3
σ4,1

�
σ5,2

�
u1, u2, u3, u4,

�
σ4,3
σ4,1

� =
�

σ4,3

σ4,1
,

and

σ5,3

�
u1, u2, u3, u4,

σ4,3+uiσ4,2
σ4,2+uiσ4,1

�
σ5,2

�
u1, u2, u3, u4,

σ4,3+uiσ4,2
σ4,2+uiσ4,1

� = ui,

where i ∈ {1, 2, 3, 4}.
Proof: The claim follows from Lemma 21.

We will need the following lemma whose proof is straight-
forward.

Lemma 25: Let {u1, u2, u3, u4} ∈
�
Uq+1

4

�
and u5 ∈

Uq+1 such that σ5,2 (u1, u2, u3, u4, u5) �= 0. Let u6 =
σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5)

. Then we have the following.

1) If u6 = u5, then u5 =
�

σ4,3
σ4,1

.

2) If u6 = ui, then u5 = σ4,3+uiσ4,2
σ4,2+uiσ4,1

, where i ∈ {1, 2, 3, 4}.

Lemma 26: Let m be even and {u1, u2, u3, u4} ∈
�
Uq+1

4

�
such that σ5,2(u1, u2, u3, u4, u5) �= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Let S be the subset of Uq+1 given by�

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1, 2, 3, 4

��
{ui : i = 1, 2, 3, 4}

���
σ4,3

σ4,1

�
.

Let ũ4 and ũ5 be the two solutions of the quadratic equa-
tion u2 +au+b = 0, where a = σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then ũ4 �∈ S and ũ5 �∈ S.

Proof: By the definition of ũ4, ũ5 and Lemma 12, u4 �∈
{ũ4, ũ5}. Suppose that ũ4 =

�
σ4,3
σ4,1

. From Lemma 21 or 24,
one gets

σ6,3

�
u1, u2, u3, u4, ũ4,

�
σ4,3

σ4,1

�
= 0.

From Lemma 23 and ũ5 �= u4, it follows that ũ5 =
�

σ4,3
σ4,1

=

ũ4, which is contrary to a �= 0. Thus, ũ4 �=
�

σ4,3
σ4,1

. By the

symmetry of ũ4 and ũ5, ũ5 �=
�

σ4,3
σ4,1

.

Suppose that ũ4 = σ4,3+uiσ4,2
σ4,2+uiσ4,1

. From Lemma 21 or 24, one
gets

σ6,3 (u1, u2, u3, u4, ui, ũ4) = 0.

From Lemma 23 and ũ5 �= u4, it follows that ũ5 = ui, which
is contrary to the definition of ũ5. Thus, ũ4 �= σ4,3+uiσ4,2

σ4,2+uiσ4,1
. By

the symmetry of ũ4 and ũ5, ũ5 �= σ4,3+uiσ4,2
σ4,2+uiσ4,1

. This completes
the proof.

Proof of Theorem 2: Recall Theorem 2 first. Let
{u1, u2, u3, u4} be a fixed 4-subset of Uq+1. Set

S =
�

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1, 2, 3, 4

��
{ui : i = 1, 2, 3, 4}

���
σ4,3

σ4,1

�
.

For any u5 �∈ {ui : i = 1, 2, 3, 4}, σ5,2(u1, u2, u3, u4, u5) �= 0
from Lemma 17. Define

T =
��

u5,
σ5,3(u1, u2, u3, u4, u5)
σ5,2(u1, u2, u3, u4, u5)

�
: u5 ∈ Uq+1 \S

�
.
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From Lemmas 24 and 25, it follows that σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5) �∈

S if u5 �∈ S. By Lemma 22, |T | = (q+1−9)
2 . From

Lemma 25 and σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5)

∈ Uq+1, we deduce that
{u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1 for any {u5, u6} ∈ T .

On the other hand, let {u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1.
Employing Lemma 24, {u5, u6} ∈ T . Thus, {u1, u2, u3, u4,
u5, u6} ∈ Bσ6,3,q+1 if and only if {u5, u6} ∈ T . Hence,
(Uq+1,Bσ6,3,q+1) is a 4-

�
q+1, 6, q−8

2

�
design. This completes

the proof.
Proof of Theorem 3: Recall Theorem 3 first. Let

{u1, u2, u3} be a fixed 3-subset of Uq+1. By Lemmas 12 and
18, {u1, u2, u3, u4, u5} ∈ Bσ6,3,q+1 if and only if u4 and u5

are the two solutions of the quadratic equation u2 +au+b = 0
in Uq+1, where a = σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b = σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

.

Hence, (Uq+1,Bσ5,2,q+1) is a Steiner System S(3, 5, q+1).
This completes the proof.

Proof of Theorem 4: Recall Theorem 4 first. For any
3-subset {u1, u2, u3} of Uq+1, let Q(u1, u2, u3) denote the
2-subset

�
u ∈ Uq+1 : u2 +au+b = 0

�
, where a =

σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b = σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Next, let {u1, u2, u3} be
fixed. Set

T 0
1 =

�
S0∪{u6} : u6 ∈ Uq+1 \S0

�
,

and

T 0
i,j =

�
{u1, u2, u3, u4}∪Q(ui, uj, u4) : u4 ∈ Uq+1 \S0

�
,

where 1 ≤ i < j ≤ 3 and S0 = {u1, u2, u3}∪
Q(u1, u2, u3). Let T 0 = T 0

1 ∪T 0
1,2∪T 0

1,3∪T 0
2,3. It is easily

checked that {u1, u2, u3, u4, u5, u6} ∈ B0
σ6,3,q+1 if and only

if {u1, u2, u3, u4, u5, u6} ∈ T 0. Note that |T 0
1 | = q−4 and

|T 0
i,i| = q−4

3 , where 1 ≤ i < j ≤ 3. From Lemma 13,
it follows that T 0

1 , T 0
1,2, T 0

1,3 and T 0
2,3 are pairwise disjoint.

Then (Uq+1,B0
σ6,3,q+1) is a 3-(q+1, 6, 2(q−4)) design.

Let {u1, u2, u3} be a fixed 3-subset of Uq+1. Define

T 1 =
�

{u1, u2, u3, u4, u5, u6} :
u4 ∈ Uq+1 \S0, u5 ∈ Uq+1 \(S0∪S1)

�
,

where S0 = {u1, u2, u3}∪Q(u1, u2, u3), S1 =�
σ4,3+uiσ4,2
σ4,2+uiσ4,1

: 1 ≤ i ≤ 4
����

σ4,3
σ4,1

�
, and

u6 =
σ5,3(u1, u2, u3, u4, u5)
σ5,2(u1, u2, u3, u4, u5)

.

Let T = T 0
1 ∪T 1. It is easily checked that B ∈ Bσ6,3,q+1

if and only if B ∈ T . Note that |T 0
1 | = q−4 and

|T 1| = (q+1−|S0|)(q+1−|S0∪S1|)
6 . By Lemmas 22 and 26,

|S0∪S1| = 11. From Lemma 13, T 0
1 and T 1 are disjoint.

Then (Uq+1,Bσ6,3,q+1) is a 3-
�
q+1, 6, (q−4)2

6

�
design. This

completes the proof.

IV. INFINITE FAMILIES OF BCH CODES

SUPPORTING t-DESIGNS FOR t = 3, 4

Throughout this section, let q = 2m, where m is a positive
integer. We consider the narrow-sense BCH code C(q,q+1,4,1)

over GF(q) and its dual, and prove that they are almost MDS,

and support 4-designs when m ≥ 5 is odd and 3-designs when
m ≥ 4 is even.

For a positive integer �, define a 6×� matrix M� by⎡
⎢⎢⎢⎢⎢⎢⎣

u−3
1 u−3

2 · · · u−3
�

u−2
1 u−2

2 · · · u−2
�

u−1
1 u−1

2 · · · u−1
�

u+1
1 u+1

2 · · · u+1
�

u+2
1 u+2

2 · · · u+2
�

u+3
1 u+3

2 · · · u+3
�

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

where u1, · · · , u� ∈ Uq+1. For r1, · · · , ri ∈ {±1,±2,±3},
let M�[r1, · · · , ri] denote the submatrix of M� obtained by
deleting the rows (ur1

1 , ur1
2 , · · · , ur1

� ), · · · , (uri
1 , uri

2 , · · · , uri

� )
of the matrix M�.

Lemma 27: Let M� be the matrix given by (16) with
{u1, · · · , u�} ∈

�Uq+1
�

�
. Consider the system of homogeneous

linear equations defined by

M�(x1, · · · , x�)T = 0. (17)

Then (17) has a nonzero solution (x1, · · · , x�) in GF(q)� if
and only if rank(M�) < �, where rank(M�) denotes the rank
of the matrix M�.

Proof: It is obvious that rank(M�) < � if (17) has a
nonzero solution (x1, · · · , x�) in GF(q)�.

Conversely, assume that rank(M�) < �. Then there exists
a nonzero vector x� = (x�

1, · · · , x�
�) ∈ GF(q2)� such that

M�x�T = 0. Choose an i0 ∈ {1, · · · , �} such that x�
i0 �= 0.

Put

x = (x��
1 +x��q

1 , · · · , x��
i0 +x��q

i0
, · · · , x��

� +x��q
� ),

where (x��
1 , · · · , x��

� ) = α
x′

i0
x� and α is a primitive element

of GF(q2). It is easily checked that M�xT = 0 and x ∈
GF(q)� \{0}. This completes the proof.

Lemma 28: Let M4 be the matrix given by (16) with
{u1, u2, u3, u4} ∈

�
Uq+1

4

�
. Then rank(M4) = 4.

Proof: Suppose that rank(M4) < 4. Then

det(M4[2, 3]) =
�

1≤i<j≤4(ui+uj)

σ3
4,4

(u1 +u2 +u3 +u4)=0,
which is contrary to Lemma 9. This completes the proof.

Lemma 29: Let M5 be the matrix given by (16) with
{u1, · · · , u5} ∈

�
Uq+1

5

�
. Then rank(M5) = 4 if and only if

σ5,2(u1, · · · , u5) = 0.
Proof: First, note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

det(M5[3]) =
�

1≤i<j≤5(ui+uj)

σ3
5,5

σ5,2,

det(M5[2]) =
�

1≤i<j≤5(ui+uj)

σ3
5,5

�
σ5,1σ5,2 +σ5,5σ

q
5,2

�
,

det(M5[1]) =
�

1≤i<j≤5(ui+uj)

σ3
5,5

�
σ5,1σ5,5σ

q
5,2 +σ2

5,2

�
,

det(M5[−3]) =
�

1≤i<j≤5(ui+uj)

σ5,5
σq

5,2,

det(M5[−2]) =
�

1≤i<j≤5(ui+uj)

σ5,5

�
σq

5,1σ
q
5,2 +σq

5,5σ5,2

�
,

det(M5[−1]) =
�

1≤i<j≤5(ui+uj)

σ5,5

�
σq

5,1σ
q
5,5σ5,2 +σ2q

5,2

�
.

The desired conclusion then follows from Lemma 28. This
completes the proof.

Lemma 30: Let M6 be the matrix given by (16) with
{u1, · · · , u6} ∈

�
Uq+1

6

�
. Then rank(M6) < 6 if and only if

σ6,3(u1, · · · , u6) = 0.
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Proof: Note that

det(M6) =

$
1≤i<j≤6(ui +uj)

σ3
6,6

σ6,3,

which completes the proof.
Lemma 31: Let m be even and M6 be the matrix given

by (16) with {u1, · · · , u6} ∈
�
Uq+1

6

�
. Let {u1, · · · , u6} ∈

B1
σ6,3,q+1, where B1

σ6,3,q+1 was defined by (6). Then the set
of all solutions of the system M6(x1, · · · , x6)T = 0 over
GF(q)6 is

{(ax1, · · · , a x6) : a ∈ GF(q)} ,

where (x1, · · · , x6) is a vector in (GF(q)∗)6.
Proof: Let {u1, · · · , u6} ∈ B1

σ6,3,q+1. By Lemma 30,
rank(M6) < 6. By Lemma 27, there exists a nonzero
(x1, · · · , x6) ∈ GF(q)6 such that M6(x1, · · · , x6)T = 0.
Suppose that there is an i (1 ≤ i ≤ 6) such that xi = 0. Then
the submatrix of the matrix M6 obtained by deleting the i-th
column has rank less than 5, which is contrary to Lemma 29
and the definition of B1

σ6,3,q+1. Thus, for any nonzero solution
(x1, · · · , x6) ∈ GF(q)6, we have xi �= 0, where 1 ≤ i ≤ 6.
The desired conclusion then follows. This completes the
proof.

Lemma 32: Let m be even and M6 be the matrix given
by (16) with {u1, · · · , u6} ∈

�
Uq+1

6

�
. If there exists a vector

(x1, · · · , x6) ∈ (GF(q)∗)6 such that M6(x1, · · · , x6)T = 0,
then {u1, · · · , u6} ∈ B1

σ6,3,q+1, where B1
σ6,3,q+1 was defined

by (6).
Proof: By Lemma 30, {u1, · · · , u6} ∈ Bσ6,3,q+1. Sup-

pose that {u1, · · · , u6} ∈ B0
σ6,3,q+1. Without loss of gen-

erality, let σ5,2(u1, · · · , u5) = 0. By Lemmas 27 and 29,
there exists a nonzero (x�

1, · · · , x�
5) ∈ GF(q)5 such that

M5(x�
1, · · · , x�

5)T = 0, that is, M6(x�
1, · · · , x�

5, 0)T = 0. Note
that

M6

�
x1 +

x1

x�
1

x�
1, · · · , x5 +

x1

x�
1

x�
5, x6 +

x1

x�
1

0
�T

= 0.

Applying Lemma 29, σ5,2(u2, · · · , u6) = 0, which is contrary
to Lemma 13 and σ5,2(u1, · · · , u5) = 0. This completes the
proof.

Lemma 33: Let f(u) = Trq2/q

�
au3+bu2 +cu

�
where (a, b, c) ∈ GF(q2)3 \{0}. Define zero(f) =
{u ∈ Uq+1 : f(u) = 0}. Then |zero(f)| ≤ 6. Moreover,
|zero(f)| = 6 if and only if a = τ√

σ6,6
, b = τσ6,1√

σ6,6
and

c = τσ6,2√
σ6,6

, where {u1, · · · , u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗.
Proof: When u ∈ Uq+1, one has

f(u) =
1
u3

�
au6 +bu5+cu4 +cqu2 +bqu+aq

�
. (18)

Thus, |zero(f)| ≤ 6.
Assume that |zero(f)| = 6. From (18), there exists

{u1, · · · , u6} ∈ Uq+1 such that f(u) = a
�6

i=1(u+ui)

u3 .
By Vieta’s formula, b = aσ6,1, c = aσ6,2, 0 = σ6,3,
cq = aσ6,6σ

q
6,2, bq = aσ6,6σ

q
6,1 and aq = aσ6,6. One obtains

a = τ√
σ6,6

from aq−1 = σ6,6, where τ ∈ GF(q)∗. Then

b = τσ6,1√
σ6,6

and c = τσ6,2√
σ6,6

.

Conversely, assume that a = τ√
σ6,6

, b = τσ6,1√
σ6,6

and c =
τσ6,2√

σ6,6
, where {u1, · · · , u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗.

Then f(u) = a
�6

i=1(u+ui)

u3 . Thus, zero(f) = {u1, · · · , u6}
and |zero(f)| = 6.

A. A Class of Narrow-Sense BCH Codes
With Length 2m +1

We are now ready to prove the following result about the
code C(q,q+1,4,1).

Theorem 34: Let m ≥ 4 be an integer. Then the narrow-
sense BCH code C(q,q+1,4,1) over GF(q) has parameters
[q+1, q−5, d], where d = 6 if m is odd and d = 5 if m
is even.

Proof: Put n = q+1. Let α be a generator of GF(q2)∗

and β = αq−1. Then β is a primitive n-th root of unity in
GF(q2), that is, β is a generator of the cyclic group Uq+1. Let
gi(x) denote the minimal polynomial of βi over GF(q), where
i ∈ {1, 2, 3}. Note that gi(x) has only the roots βi and β−i.
One deduces that g1(x), g2(x) and g3(x) are pairwise distinct
irreducible polynomials of degree 2. By definition, g(x) :=
g1(x)g2(x)g3(x) is the generator polynomial of C(q,q+1,4,1).
Therefore, the dimension of C(q,q+1,4,1) is q+1−6. Note that
g(x) has only the roots β−3, β−2, β−1, β, β2 and β3. By the
BCH bound, the minimum weight of C(q,q+1,4,1) is at least 4.
Put γ = β−1. Then γq+1 = β−(q+1) = 1. It then follows from
Delsarte’s theorem that the trace expression of C⊥

(q,q+1,4,1) is
given by

C⊥
(q,q+1,4,1) = {c(a,b,c) : a, b, c ∈ GF(q2)}, (19)

where c(a,b,c) = (Trq2/q(aγi +bγ2i +cγ3i))q
i=0.

Define

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 γ−3 γ−6 γ−9 · · · γ−3q

1 γ−2 γ−4 γ−6 · · · γ−2q

1 γ−1 γ−2 γ−3 · · · γ−q

1 γ+1 γ+2 γ+3 · · · γ+q

1 γ+2 γ+4 γ+6 · · · γ+2q

1 γ+3 γ+6 γ+9 · · · γ+3q

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20)

It is easily seen that H is a parity-check matrix of
C(q,q+1,4,1), i.e.,

C(q,q+1,4,1) = {c ∈ GF(q)q+1 : cHT = 0}. (21)

Let m be odd. Note that d ≥ 4. Suppose that

d = 4. Then there exist {u1, · · · , u4} ∈
�
Uq+1

4

�
and

(x1, · · · , x4) ∈ (GF(q)∗)4 such that M4(x1, · · · , x4)T = 0.
Thus rank(M4) < 4, which is contrary to Lemma 28. Suppose
that d = 5. Then there exist {u1, · · · , u5} ∈

�
Uq+1

5

�
and

(x1, · · · , x5) ∈ (GF(q)∗)5 such that M5(x1, · · · , x5)T = 0.
By Lemma 29, rank(M5) < 5 and σ5,2 = 0, which is contrary
to Lemma 17. Thus, d ≥ 6. By Theorem 2, Bσ6,3,q+1 �= ∅.
Choose {u1, · · · , u6} ∈ Bσ6,3,q+1. By Lemma 27, there exists
(x1, · · · , x6) ∈ (GF(q)∗)6 such that M6(x1, · · · , x6)T = 0.
Set c = (c1, · · · , cq+1) where

ci =
�

xj , if i = ij,
0, otherwise,

(22)
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where γij is given by uj = γij (j ∈ {1, · · · , 6}). By (21),
c ∈ C(q,q+1,4,1) and wt(c) = 6. Thus, d = 6.

The proof for the even m case is similar to that for the odd
m case and the detail is omitted. This completes the proof.

Theorem 35: Let m ≥ 4 and C⊥
(q,q+1,4,1) be the dual

of the narrow-sense BCH code C(q,q+1,4,1) over GF(q).
Then C⊥

(q,q+1,4,1) has parameters [q+1, 6, q−5]. In particular,
C(q,q+1,4,1) is a near MDS code if m is odd.

Proof: From Theorems 2 and 4, Bσ6,3,q+1 �= ∅.
The desired conclusion then follows from Lemma 33 and
Equation (19). This completes the proof.

B. An Infinite Class of Near MDS Codes
Supporting 4-Designs

Theorem 36: Let m ≥ 5 be odd. Then the incidence
structure �

P
�
C(q,q+1,4,1)

�
,B6

�
C(q,q+1,4,1)

��
of the minimum weight codewords in C(q,q+1,4,1) is isomor-
phic to (Uq+1,Bσ6,3,q+1).

Proof: Using Lemma 30, the desired conclusion then
follows by a similar discussion as in the proof of Theorem 34.
This completes the proof.

The theorem below makes a breakthrough in 71 years in the
sense that it presents the first family of linear codes supporting
an infinite family of 4-designs since the first linear code
holding a 4-design was discovered 71 years ago by Golay [11].

Theorem 37: Let m ≥ 5 be odd. Then the minimum weight
codewords in C(q,q+1,4,1) support a 4-(q+1, 6, (q−8)/2)
design and the minimum weight codewords in C⊥

(q,q+1,4,1)

support a 4-(q+1, q−5, λ) design with

λ =
q−8
30

�
q−5

4

�
.

Proof: The desired conclusion follows from
Theorems 36, 2 and 1. This completes the proof.

Example 38: Let m = 5. Then C(q,q+1,4,1) has parameters
[33, 27, 6]. The dual C⊥

(q,q+1,4,1) has parameters [33, 6, 27] and
weight distribution

1+1014816z27+1268520z28+20296320z29+64609952z30

+210132384z31+399584823 z32 +376835008 z33.

The codewords of weight 6 in C(q,q+1,4,1) supports a
4-(33, 6, 12) design, and the codewords of weight 27 in
C⊥

(q,q+1,4,1) support a 4-(33, 27, 14040) design.
In Example 38, the code C(q,q+1,4,1) has a codeword of

weight i for all i with 6 ≤ i ≤ 33. Hence, the Assmus-Mattson
Theorem cannot prove that the codes in Theorem 37 support
4-designs. It is an open problem whether the generalised
Assmus-Mattson theorem in [20] can prove that the codes in
Theorem 37 support 4-designs. It looks impossible to prove
that the codes in Theorem 37 support 4-designs with the
automorphism groups of the codes due to the following:

1) Except the Mathieu groups M11, M12, M23, M24,
the alternating group An and the symmetric group
Sn, no finite permutation groups are more than
3-transitive [2].

2) No infinite family of 4-homogeneous permutation
groups is known.

It would be a very interesting problem to determine the
automorphism groups of the codes in Theorem 37.

C. An Infinite Class of Linear Codes Supporting Steiner
Systems S(3, 5, 4m +1)

Theorem 39: Let m ≥ 4 be even. Then the incidence
structure �

P
�
C(q,q+1,4,1)

�
,B5

�
C(q,q+1,4,1)

��
of the minimum weight codewords in C(q,q+1,4,1) is isomor-
phic to (Uq+1,Bσ5,2,q+1), and the incidence structure�

P
�
C(q,q+1,4,1)

�
,B6

�
C(q,q+1,4,1)

��
is isomorphic to (Uq+1,B1

σ6,3,q+1). Moreover, the incidence
structure�

P
�
C⊥

(q,q+1,4,1)

�
,Bq−5

�
C⊥

(q,q+1,4,1)

��
is isomorphic to the complementary incidence structure of
(Uq+1,Bσ6,3,q+1).

Proof: Using Lemma 29, by a similar discussion as in the
proof of Theorem 34, we can prove that the incidence structure�

P
�
C(q,q+1,4,1)

�
,B5

�
C(q,q+1,4,1)

��
is isomorphic to (Uq+1,Bσ5,2,q+1). Employing Lemma 32, we
can prove that�

P
�
C(q,q+1,4,1)

�
,B6

�
C(q,q+1,4,1)

��
is isomorphic to (Uq+1,B1

σ6,3,q+1). The last statement then
follows from Equation (19) and Lemma 33. This completes
the proof.

Theorem 40: Let m ≥ 4 be even. Then the minimum
weight codewords in C(q,q+1,4,1) support a 3-(q+1, 5, 1)
design, i.e., a Steiner system S(3, 5, q+1), and the minimum
weight codewords in C⊥

(q,q+1,4,1) support a 3-(q+1, q−5, λ)
design with

λ =
(q−4)2

120

�
q−5

3

�
.

Furthermore, the codewords of weight 6 in C(q,q+1,4,1) support

a 3-
�
q+1, 6, (q−4)(q−16)

6

�
design if m ≥ 6.

Proof: The desired conclusion follows from
Theorems 39, 3, 4 and Corollary 5. This completes the
proof.

There are two different constructions of an infinite family
of Steiner systems S(3, r+1, rm +1) for r being a prime
power and m ≥ 2. The first produces the spherical geom-
etry designs due to [24], which is based on the action of
PGL2(GF(rm)) on the base block GF(r)∪{∞}. The auto-
morphism group of the spherical geometry design contains
the group PΓL2(GF(rm)). The second construction was pro-
posed in [13], and is based on affine spaces. The Steiner
systems S(3, r+1, rm +1) from the two constructions are not
isomorphic [13].
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When m ∈ {2, 3}, the Steiner system S(3, 5, 4m+1) of
Theorem 40 is isomorphic to the spherical geometry design
with the same parameters. We conjecture that they are isomor-
phic in general, but do not have a proof. The contribution of
Theorem 40 is a coding-theoretic construction of the spherical
geometry design S(3, 5, 4m +1) if this conjecture is true. .

Example 41: Let m = 4. Then C(q,q+1,4,1) has parameters
[17, 11, 5] and weight distribution

1+1020z5+224400 z7 +3730650z8+55370700z9

+669519840z10+6378704640z11+47857084200z12

+276083558100z13+1183224112800z14

+3549668972400z15+6655630071165z16

+5872614694500z17.

The codewords of weight 5 in C(q,q+1,4,1) support a Steiner
system S(3, 5, 17).

The dual C⊥
(q,q+1,4,1) has parameters [17, 6, 11] and weight

distribution

1+12240z11+35700 z12 +244800z13+1203600 z14

+3292560z15+6398715 z16 +5589600 z17.

The codewords of weight 11 in C⊥
(q,q+1,4,1) support a

3-(17, 11, 198) design.
This example shows that the Assmus-Mattson Theorem can-

not prove that the codes C(q,q+1,4,1) and C⊥
(q,q+1,4,1) sup-

port 3-designs. It is an open question if the generalised
Assmus-Mattson theorem in [20] can prove that the codes in
Theorem 40 support 4-designs. It is also an open question if
the automorphism groups of the codes can prove that the codes
support 3-designs.

V. SUMMARY AND CONCLUDING REMARKS

This paper settled the 71-year-old open problem by pre-
senting an infinite family of near MDS codes of length
22m+1 +1 over GF(22m+1) holding an infinite family of
4-(22m+1+1, 6, 22m−4) designs [14, Table 4.37]. Hence,
these codes have nice applications in combinatorics. It would
be nice if the automorphism groups of the linear codes could
be determined. It is noticed that the novelty of this paper
and [6] is that elementary symmetric polynomials and their
properties were used to prove the design property of the
incidence structures from special near MDS codes. This opens
a new direction of searching for t-designs from elementary
symmetric polynomials.

A coding-theoretic construction of a Steiner system
S(3, r+1, rm +1) was given in [6] for r = 3 and in
this paper for r = 4. Whether there exists an infi-
nite family of linear codes holding a Steiner system
S(3, r+1, rm +1) for r ≥ 5 being a prime power is yet
unknown.

An interesting open problem is whether there exists an
infinite family of linear codes holding an infinite family of
t-designs for t ≥ 5. Another open problem is whether there is
a specific linear code supporting a nontrivial 6-design.
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