
Entropy-Preserving Cuttings and Space-Efficient

Planar Point Location

Sunil Arya∗ Theocharis Malamatos∗ David M. Mount†

Abstract

Point location is the problem of preprocessing a planar

polygonal subdivision S into a data structure in order to

determine efficiently the cell of the subdivision that contains

a given query point. Given the probabilities pz that the

query point lies within each cell z ∈ S, a natural question

is how to design such a structure so as to minimize the

expected-case query time. The entropy H of the probability

distribution is the dominant term in the lower bound on the

expected-case search time. Clearly the number of edges n

of the subdivision is a lower bound on the space required.

There is no known approach that simultaneously achieves

the goals of H + o(H) query time and O(n) space. In this

paper we introduce entropy-preserving cuttings and show

how to use them to achieve query time H +o(H), using only

O(n log∗ n) space.

1 Introduction

Planar point location is an important problem in com-
putational geometry. We are given a polygonal subdi-
vision S consisting of n edges, and the goal is to pro-
duce a data structure so that, given any query point q,
the polygonal cell of the subdivision containing q can be
computed efficiently. The first worst-case optimal result
in the area was Kirkpatrick’s elegant method based on
hierarchical triangulations [9], which supported query
processing in O(log n) time using O(n) space. This was
followed by a number of other optimal methods with
better practical performance including the layered-DAG
of Edelsbrunner, Guibas, and Stolfi [7], searching in
similar lists by Cole [6], the method based on persis-
tent search trees by Sarnak and Tarjan [13], and the
randomized incremental method of Mulmuley [12] and
Seidel [14]. The question of the exact constant factor
in query time was raised in work by Goodrich, Orletsky

∗Department of Computer Science, The Hong Kong University

of Science and Technology, Clear Water Bay, Kowloon, Hong

Kong. Email: {arya,tmalamat}@cs.ust.hk. Research supported

in part by a grant from the Hong Kong Research Grants Council.
†Department of Computer Science and Institute for Advanced

Computer Studies, University of Maryland, College Park, Mary-

land. Email: mount@cs.umd.edu. Research supported in part by

the National Science Foundation under grant CCR–9712379.

and Ramaiyer [8] and was solved by Adamy and Sei-
del [1], who showed that point location queries can be
answered in log2 n + 2

√

log2 n + o(
√

log n) time.
All of this work was done in terms of worst-case

query times. In many applications, point location
queries tend to be clustered in regions of greater interest.
This raises the question of whether it is possible to
use the knowledge of the query distribution to improve
expected-case query time. We model this by assuming
that for each cell z ∈ S we are given the probability
pz that a query point lies in z. We assume that the
probability that the query point lies on an edge or vertex
of the subdivision or lies outside the subdivision is zero.

The entropy of the S, denoted H throughout, is
defined

entropy(S) = H =
∑

z∈S

pz log(1/pz).

(We use log to denote the base-2 logarithm.) For the 1-
dimensional restriction of this problem, a classical result
due to Shannon implies that the expected number of
comparisons needed to answer such queries is at least
as large as the entropy of the probability distribution
[10, 15]. Mehlhorn [11] showed that it is possible to
build a binary search tree whose expected search time
is at most H + 2.

Arya, Cheng, Mount, and Ramesh [2] showed that
for subdivisions consisting of convex polygons, assum-
ing that the x and y coordinates of the query point are
chosen independently from some probability distribu-
tion, the entropy bound can be achieved to within a
constant multiplicative factor (2 using quadratic space
and about 4 using linear space). These results were
strengthened by Arya, Malamatos, and Mount [3] for
the case of polygonal subdivisions in which each cell
has constant complexity. They presented an algorithm
which answers queries in H+O(H2/3+1) expected time
and O(n log n) space. Recently the same authors have
given a simple weighted variant of the randomized in-
cremental algorithm and shown that it answers queries
in O(H) expected time and O(n) space [4]. This leaves
open the question of whether there exists a linear space
data structure that can answer queries in H + o(H) ex-
pected time.

1



In this paper we come very close to this goal by
presenting a data structure that uses O(n log∗ n) space
and whose expected-case query time is H + O(H2/3 +
1). Our methods are loosely based on an idea of
Goodrich, Orletsky and Ramaiyer [8] (also used by
Adamy and Seidel [1]) to use ǫ-cuttings to reduce the
space requirements. Given a subdivision S with n edges,
and a parameter r ≥ 1, a (1/r)-cutting is a partition of
the plane into O(r) trapezoids such that the interior of
each trapezoid is intersected by at most n/r edges of S.
If numeric weights are assigned to the edges, then this
can be generalized to a weighted (1/r)-cutting, where
now the total weight of edges intersecting any trapezoid
is at most W/r, where W is the total weight of all the
edges. However, this partitioning process may refine
the subdivision in a way that significantly increases its
entropy, and this increases the expected query time. An
important contribution of this paper is the notion of an
entropy-preserving cutting, which additionally ensures
that the entropy of the subdivision is increased by at
most an additive constant.

The input to our algorithm is a polygonal subdivi-
sion S and the probability pz of the query point lying in
each cell z ∈ S. We assume that the probability of the
query point lying in the unbounded face of S is zero. A
basic assumption is that each cell of the subdivision is
bounded by a constant number of sides. To simplify the
presentation, we will assume that the given subdivision
is the trapezoidal decomposition of a set X of segments.
We will also assume that we have complete information
on the query distribution within each trapezoid. In par-
ticular, we assume that we can compute the probability
that the query point lies within the intersection of a
vertical slab with a trapezoid.

Query times are measured in terms of the time
needed to locate the query point based on two standard
types of comparisons. The first determines whether
the x-coordinate of the query point lies to the left or
right of the x-coordinate of some point, and the other
determines whether the query point lies above or below
some line. This is similar to the model introduced by
Adamy and Seidel [1].

2 Entropy-Preserving Cuttings

The main result of this section is to show the existence
of entropy-preserving cuttings. This is given in the
following lemma.

Lemma 2.1. Let S be a trapezoidal decomposition of a
set X of segments, with the query distribution specified.
Let n denote the total number of segments in X. For any
r ≥ 1, we can partition the plane into O(r) trapezoids
satisfying the following properties. Let C denote the

subdivision consisting of the O(r) trapezoids, S′ denote
the subdivision formed by superimposing C on the given
subdivision S, and τ denote any trapezoid in C.

(i) Either τ is a subset of some trapezoid in S, or the
probability of the query point lying in τ is at most
1/r.

(ii) The number of segments intersecting the interior of
τ is at most n/r.

(iii) The entropy increase is bounded by a constant, i.e.,
HS′ ≤ HS + O(1).

Proof (Sketch)
Recall that a trapezoid z ∈ S is defined by at most

four segments of X ; the segments that support its top
and bottom boundaries, the segment whose end point
defines its right boundary, and the segment whose end
point defines its left boundary. We first assign weights
to the segments of X as follows. Each trapezoid z ∈ S
contributes a weight of pz/4 to each of its defining
segments. For each segment x ∈ X , let w′

x be the sum of
the weight contribution from all the trapezoids incident
to it. Finally, we set its weight wx = (w′

x + 1/n)/2,
and compute a standard weighted (1/r′)-cutting for X .
(Here r′ is a function of r to be specified later in the
proof.) We will assume that each trapezoid in this
cutting is bounded from above and below by a segment
in X (it is well-known that such cuttings exist [5]).
Let C′ denote this cutting. Define the weight of any
trapezoid in C′ to be the total weight of all the segments
intersecting its interior. By standard results on cuttings,
C′ has O(r′) trapezoids and the weight of each trapezoid
is at most O(1/r′).

We modify the cutting C′ by applying the following
procedure on each trapezoid z ∈ S. If z contains a
contiguous sequence of trapezoids of C′, all of which are
contained within z, then we replace each such maximal
subsequence by one trapezoid. It is easy to see that
after this modification, we still have a weighted (1/r′)-
cutting. Let C denote this new cutting. We claim that
C satisfies the three properties given in the statement of
the lemma.

Let τ denote any trapezoid in C. Note that the
weight of a segment x is at least a constant times the
probability of the trapezoids of S that are incident to it.
From this it is easy to see that if there is a segment that
intersects the interior of τ , then the total probability of
the trapezoids of S that have a non-empty intersection
with τ is O(1/r′); this implies that the probability of
the query point lying in τ is O(1/r′). Otherwise τ must
be completely contained within a trapezoid in S.

Also, since the weight of each segment is at least
1/2n and the weight of τ is O(1/r′), it follows that there

2



can be at most O(n/r′) segments of S intersecting the
interior of τ . Choosing r′ to be a suitable large constant
times r proves (i) and (ii)

Let S′ denote the subdivision formed by superim-
posing C on S. Note that the cells of S′ are trapezoids;
we use the term fragments to refer to these cells. By
definition of entropy and elementary calculus, it can be
easily seen that the entropy of S′ exceeds the entropy
of S by at most

∑

z∈S pz log fz where fz is the num-
ber of fragments in z. This quantity is no more than
∑

z∈S pzfz. In the remainder of the proof, we will show
that this is bounded by a constant, which will prove
(iii).

We distinguish between two kinds of fragments in
z. Suppose that a fragment is the intersection of z with
a trapezoid τ ∈ C; if τ is contained within z, we call it a
type-1 fragment, otherwise it is a type-2 fragment. Let
f1

z and f2
z denote the number of fragments in z of type

1 and type 2, respectively. In view of how C′ is modified
to obtain C, it is clear that there must be a fragment
of type 2 between any two fragments of type 1, and so
f1

z ≤ f2
z + 1. Thus

∑

z∈S

pzfz =
∑

z∈S

pz(f
1
z + f2

z )

≤
∑

z∈S

pz(2f2
z + 1).(2.1)

To analyze this sum let C1 denote the set of trape-
zoids in C that are not completely contained within
a cell of S. Observe that

∑

z∈S pzf
2
z is the same as

∑

τ∈C1

∑

z∈S pzδ(z, τ), where δ(z, τ) is 1 if z overlaps
the interior of τ and is 0 otherwise. By our earlier rea-
soning, for any cell τ ∈ C1,

∑

z∈S pzδ(z, τ) is O(1/r).
Since the number of trapezoids in C, and hence in C1,
is O(r), it follows that

∑

z∈S pzf
2
z is O(1). Substituting

in Eq. (2.1), we have
∑

z∈S pzfz = O(1), which is the
desired claim. ⊓⊔

3 Search Structure: Overview

In this section we present an overview of a generic point
location data structure. Specifics will be provided later.
Given a subdivision S, we build a multi-way partition
tree T . The point location queries are answered by a
simple descent in this partition tree. Since the degree
of a node in the tree can be quite large, we need to
maintain an auxiliary point location search structure at
each internal node, which is used to determine efficiently
the child that contains the query point. For this purpose
we will employ two different search structures in this
paper. One structure uses O(n log n) space and achieves
H + O(H2/3 + 1) expected time [3] and the other uses

O(n) space and achieves O(H) expected time [4].
Each node u of T is associated with a trapezoid τu

and a subdivision Su restricted to this trapezoid. The
root of T is associated with the entire plane and the
given subdivision S. If the subdivision for u consists
of a single cell, then u is a leaf. Otherwise u is an
internal node. Let I denote the set of internal nodes.
There are two different types of internal nodes, denoted
I ′ and I ′′. For a node u ∈ I ′, if the subdivision Su

consists of m cells, we create m children each of which
is a leaf representing one of these cells. For a node u ∈
I ′′, we construct an entropy-preserving (1/r)-cutting as
described in Lemma 2.1 (the choice of r will be specified
later). The node u has O(r) children representing
each of the trapezoids in the cutting. The associated
subdivision for the children of u is the subdivision Su

restricted to the corresponding trapezoid. Note that
these children are leaves if the corresponding subdivision
has just one cell, otherwise they are internal nodes.

The following lemma proved in Knuth [10] will be
useful in our analysis of the expected query time. Its
proof uses induction from the bottom to the top of the
tree.

Consider any multi-way tree T in which probabil-
ities have been assigned to the leaves. For a node
u ∈ T define pu to be the probability of visiting node
u during the search (i.e., pu is the total probability
of the leaves descended from u). Define Hu, the en-
tropy of an internal node u, to be the entropy of the
probability distribution induced by the children of u.
For example, if u has three children and the probabil-
ities of visiting these children from u are p1, p2, and
p3, respectively (note that p1 + p2 + p3 = 1), then
Hu = p1 log(1/p1) + p2 log(1/p2) + p3 log(1/p3).

Lemma 3.1. (Knuth) The sum of puHu over all inter-
nal nodes u of a tree equals the entropy of the probability
distribution on the leaves.

4 Analysis of Expected-Case Query Time

Let S be the given subdivision and let T be any multi-
way tree for S constructed as described in Section 3.
Let I denote the set of internal nodes of T . Let HL

denote the entropy of the leaves of T . Let PI denote
the total probability of all the internal nodes of T , i.e.,
PI =

∑

u∈I pu.
The following lemma shows that the increase in the

entropy of the leaves of T over the entropy of S is no
more than a constant times the total probability of all
its internal nodes. This bound holds irrespective of the
sizes of the cuttings used for the nodes of T .

Lemma 4.1. Let I ′′ ⊆ I be the internal nodes of T
for which an entropy-preserving cutting is constructed.

3



Then

HL ≤ HS + O

(

∑

u∈I′′

pu

)

≤ HS + O(PI ).

Proof The second inequality in the lemma is trivial.
We prove the first inequality by induction on the size
of the subtree. For any node u, let Lu and I ′′u denote
the leaves and internal nodes of I ′′, respectively, in the
subtree rooted at u. For the basis case, consider a tree
with one leaf v. Then HSv

= HLv
= 0 and the claim

holds trivially.
For the induction hypothesis, assume that the claim

holds for all subtrees of size less than k. Let T be a
subtree with k nodes. Let v denote the root of T with
children vi, 1 ≤ i ≤ d. Let pi denote the probability
of visiting the ith child from node v. We consider two
cases. If v does not have an associated cutting, then
its children are leaves and represent the cells in Sv.
Thus HLv

= HSv
and since I ′′v is empty we are done.

Now suppose that v has an associated cutting. By the
induction hypothesis, for 1 ≤ i ≤ d,

HLvi
≤ HSvi

+ O





∑

u∈I′′

vi

p′u



 ,(4.2)

where p′u denotes the probability of visiting u from node
vi. Applying Lemma 3.1, it is easy to see that

HLv
=

d
∑

i=1

(

pi log
1

pi
+ piHLvi

)

(4.3)

and

HS′

v
=

d
∑

i=1

(

pi log
1

pi
+ piHSvi

)

,(4.4)

where S′
v denotes the subdivision formed by superim-

posing the cutting for v on Sv. Using Eqs. (4.2), (4.3),
and (4.4), we obtain

HLv
≤

d
∑

i=1



pi log
1

pi
+ pi



HSvi
+ O





∑

u∈I′′

vi

p′u













= HS′

v
+ O





∑

u∈I′′

v
\v

pu



 ,

where pu denotes the probability of visiting u from node
v.

Lemma 2.1 implies that HS′

v
≤ HSv

+ O(1). Thus

HLv
≤ HSv

+ O(1) + O





∑

u∈I′′

v
\v

pu





= HSv
+ O





∑

u∈I′′

v

pu



 ,

since pv = 1 (because it is the root of the subtree
under consideration). This completes the proof by
induction. ⊓⊔

In the next lemma we establish a general bound on
the expected query time using tree T . Note this bound
holds irrespective of the sizes of the cuttings used for
the nodes of T .

Lemma 4.2. Let I1 and I2 denote the set of internal
nodes of T that are associated with point location search
structures (to determine which child to visit) that guar-

antee expected query times of Hu + O(H
2/3
u + 1) and

O(Hu), respectively. Here Hu denotes the entropy of
the corresponding node u. Then the expected query time
using T is at most

HS + O
(

PI

(

H
2/3
S + 1

))

+ O

(

∑

u∈I2

puHu

)

.

Proof The expected query time is at most

∑

u∈I1

pu

[

Hu + O
(

H2/3
u + 1

)]

+
∑

u∈I2

pu[O(Hu)]

=
∑

u∈I1

puHu + O

(

∑

u∈I1

pu

[

H2/3
u + 1

]

)

+ O

(

∑

u∈I2

puHu

)

.

We can simplify the first term as
∑

u∈I1
puHu ≤

∑

u∈I puHu = HL, where we have used Lemma 3.1. By
Lemma 4.1, this is at most HS + O(PI).

The second term can be written as
∑

u∈I1

pu

[

H2/3
u + 1

]

≤
∑

u∈I

pu

[

H2/3
u + 1

]

= PI

(

∑

u∈I

pu

PI

[

H2/3
u + 1

]

)

≤ PI





[

∑

u∈I

pu

PI
Hu

]2/3

+ 1



 .

Using Lemmas 3.1 and 4.1, this is at most P
1/3
I (HS +

O(PI))
2/3 + PI , which is at most P

1/3
I H

2/3
S + O(PI ).

Putting it all together, the expected query time is at

most HS + O(PI(H
2/3
S + 1)) + O

(
∑

u∈I2
puHu

)

. ⊓⊔

4



The following lemma shows that if the entropy is not
very small, then we can provide expected query time of
HS + o(HS) using linear space. For a node u in T , let
du denote its degree (i.e., number of its children).

Lemma 4.3. If HS ≥ log log n, then we can construct a
search structure that answers point location queries in

expected time HS + O(H
2/3
S + 1) using O(n) space.

Proof We build a 4-level search tree T as follows.
We construct an entropy-preserving cutting for the root
(level 1) using r = n/ logn, and for the internal nodes
at level 2 using r = log n/ log log n. For any internal
node u at level 3, we do not compute a cutting, instead
it has a child corresponding to each cell in Su. For any
internal node u at level 1 (root) and level 2, we use
the O(du log du) space auxiliary search structure that

provides expected query time of Hu + O(H
2/3
u + 1).

For any internal node u at level 3, we use the O(du)
space search structure that provides expected query
time O(Hu).

Applying Lemma 4.2 it follows that the expected
query time is

HS + O(PI(H
2/3
S + 1)) + O

(

∑

u∈I2

puHu

)

.

The sum of the probabilities of the nodes at any one
level is at most one. Thus, PI is at most 3, and
∑

u∈I2
pu ≤ 1. Thus the expected query time is at most

HS + O(H
2/3
S + 1) + O(maxu∈I2 Hu). By Lemma 2.1,

it follows that the number of segments intersecting the
interior of a trapezoid associated with an internal node
u at level 3 is at most log log n, and so Hu can be at
most O(log log log n) = O(log(HS)). Thus the expected

query time is bounded by HS + O(H
2/3
S + 1).

It is easy to check that the total space used by
auxiliary search structures at each of the levels 1, 2, and
3, is O(n). Thus the total space used is also O(n). ⊓⊔

Let log(i) n denote the function obtained by iter-
ating the log function i times, i.e., log(0) n = n and
log(i) n = log(log(i−1) n) for i > 0. The proof of the
above lemma can be easily generalized under the con-
dition that HS ≥ log(c) n, where c is any constant, and
the same bounds continue to hold. However if the en-
tropy is extremely low, it is not clear how to achieve
linear space. But as the following lemma shows we can
still achieve a significant space reduction.

Lemma 4.4. We can construct a search structure that
answers point location queries in expected time HS +

O(H
2/3
S + 1) using O(n2O(log∗ n)) space.

Proof By Lemma 4.3, the theorem is obviously true if
HS ≥ log log n. So let us assume that HS < log log n.
We build a search tree T for the subdivision S as follows.
We construct entropy-preserving (1/r)-cuttings for all
internal nodes of T , where the parameter r depends
on the level i as r = log(i−1) n/ log(i) n. The point
location structure used for each internal node u uses
O(du log du) space and ensures expected query time of

Hu + O(H
2/3
u + 1).

By Lemma 2.1, the complexity of the subdivision
associated with the internal nodes at level i is at most
log(i−1) n, which implies that the depth of T is at most
log∗ n. It is easy to check that the space used by the
point-location search structure at the root is O(n) and
this increases by a constant factor with each successive
level. Since the depth of T is log∗ n, the total space used
is O(n2O(log∗ n)).

By Lemma 4.2, the expected query time is HS +

O(PI(H
2/3
S + 1)). In the remainder we will show that

PI is bounded by a constant, which implies the desired
bound on the expected query time and completes the
proof.

To show the bound on PI , we will establish that the
total probability of the internal nodes at any level i, 2 ≤
i ≤ log∗ n, is no more than 1/2i. Summing over all the
levels, it will follow that PI is bounded by a constant.
For the sake of contradiction suppose that for some
i ≥ 2, the total probability of the internal nodes at level
i is greater than 1/2i. By Lemma 2.1, the probability

of any of these internal nodes is at most log(i−1) n/n.
Consider the set of leaves generated by these internal
nodes. Clearly any of these leaves has probability at
most log(i−1) n/n. Thus the contribution to the entropy

of these leaves is at least (1/2i) log(n/ log(i−1) n). Recall
that i ≤ log∗ n. Thus

HL ≥ 1

2log∗ n

(

log n − log(i) n
)

≥ log n − log log n

2log log log n

=
log n

log log n
− 1.(4.5)

However, since the depth of T is at most log∗ n, PI is
at most log∗ n, and so by Lemma 4.1, HL is at most
log log n+ log∗ n. This contradicts Eq. (4.5). Hence the
total probability of the internal nodes at level i, i ≥ 2,
is at most 1/2i. ⊓⊔

Theorem 4.1. We can construct a search structure
that answers point location queries in expected time

HS + O(H
2/3
S + 1) using O(n log∗ n) space.

5



Proof Recall that Lemma 4.4 gives us a search struc-
ture that provides expected query time of H+O(H2/3+
1) using O(n2c log∗ n) space, where c is a suitable con-
stant. We build a 3-level search tree T for the subdivi-
sion S as follows. For the root we construct an entropy-
preserving (1/r)-cutting using r = n/2c log∗ n, and use
the search structure provided by Lemma 4.4 to do point
location. The size of the subdivision corresponding to
the nodes at level 2 is at most 2c log∗ n. For any inter-
nal node u at level 2, we do not compute a cutting,
instead it has a child corresponding to each cell in Su.
For these nodes we use the O(du log du) space auxiliary
search structure that provides expected query time of

Hu + O(H
2/3
u + 1). It is easy to see that the space

used by the search structure at the root is O(n) and
all the search structures at level 2 together use space
O(n log∗ n). Also, by Lemma 4.2, it is clear that the ex-

pected query time is bounded by HS +O(H
2/3
S +1). ⊓⊔

References

[1] U. Adamy and R. Seidel. Planar point location close
to the information-theoretic lower bound. In Proc. 9th

ACM-SIAM Sympos. Discrete Algorithms, 1998.
[2] S. Arya, S.-W. Cheng, D. M. Mount, and H. Ramesh.

Efficient expected-case algorithms for planar point
location. In Proc. 7th Scand. Workshop Algorithm

Theory, volume 1851 of Lecture Notes Comput. Sci.,
pages 353–366. Springer-Verlag, 2000.

[3] S. Arya, T. Malamatos, and D. M. Mount. Nearly
optimal expected-case planar point location. In Proc.

41 Annu. IEEE Sympos. Found. Comput. Sci., 2000.
(to appear).

[4] S. Arya, T. Malamatos, and D. M. Mount. A simple
entropy-based algorithm for planar point location. In
Proc. 12th ACM-SIAM Sympos. Discrete Algorithms,
2001. (to appear).

[5] B. Chazelle and J. Friedman. A deterministic view of
random sampling and its use in geometry. Combina-

torica, 10(3):229–249, 1990.
[6] R. Cole. Searching and storing similar lists. J.

Algorithms, 7:202–220, 1986.
[7] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal

point location in a monotone subdivision. SIAM J.

Comput., 15(2):317–340, 1986.
[8] M. T. Goodrich, M. Orletsky, and K. Ramaiyer. Meth-

ods for achieving fast query times in point location data
structures. In Proc. 8th ACM-SIAM Sympos. Discrete

Algorithms, pages 757–766, 1997.
[9] D. G. Kirkpatrick. Optimal search in planar subdivi-

sions. SIAM J. Comput., 12(1):28–35, 1983.
[10] D. E. Knuth. Sorting and Searching, volume 3 of

The Art of Computer Programming. Addison-Wesley,
Reading, MA, second edition, 1998.

[11] K. Mehlhorn. Best possible bounds on the weighted
path length of optimum binary search trees. SIAM J.

Comput., 6:235–239, 1977.
[12] K. Mulmuley. A fast planar partition algorithm, I. J.

Symbolic Comput., 10(3–4):253–280, 1990.
[13] N. Sarnak and R. E. Tarjan. Planar point location us-

ing persistent search trees. Commun. ACM, 29(7):669–
679, July 1986.

[14] R. Seidel. A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions
and for triangulating polygons. Comput. Geom. The-

ory Appl., 1(1):51–64, 1991.
[15] C. E. Shannon. A mathematical theory of communi-

cation. Bell Sys. Tech. Journal, 27:379–423, 623–656,
1948.

6


