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David M. Mount∗

Dept. of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland

Abstract

Coverings of convex bodies have emerged as a central component in the design of efficient solutions
to approximation problems involving convex bodies. Intuitively, given a convex body K and ε > 0, a
covering is a collection of convex bodies whose union covers K such that a constant factor expansion
of each body lies within an ε expansion of K. Coverings have been employed in many applications,
such as approximations for diameter, width, and ε-kernels of point sets, approximate nearest neighbor
searching, polytope approximations with low combinatorial complexity, and approximations to the
Closest Vector Problem (CVP).

It is known how to construct coverings of size nO(n)/ε(n−1)/2 for general convex bodies in Rn. In
special cases, such as when the convex body is the `p unit ball, this bound has been improved to
2O(n)/ε(n−1)/2. This raises the question of whether such a bound generally holds. In this paper we
answer the question in the affirmative.

We demonstrate the power and versatility of our coverings by applying them to the problem of
approximating a convex body by a polytope, where the error is measured through the Banach-Mazur
metric. Given a well-centered convex body K and an approximation parameter ε > 0, we show that
there exists a polytope P consisting of 2O(n)/ε(n−1)/2 vertices (facets) such that K ⊂ P ⊂ K(1 + ε).
This bound is optimal in the worst case up to factors of 2O(n). (This bound has been established
recently using different techniques, but our approach is arguably simpler and more elegant.) As an
additional consequence, we obtain the fastest (1 + ε)-approximate CVP algorithm that works in any
norm, with a running time of 2O(n)/ε(n−1)/2 up to polynomial factors in the input size, and we obtain
the fastest (1 + ε)-approximation algorithm for integer programming. We also present a framework
for constructing coverings of optimal size for any convex body (up to factors of 2O(n)).
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1 Introduction

Convex bodies are of fundamental importance in mathematics and computer science, and given the
high complexity of exact representations, concise approximate representations are essential to many
applications. There are a number of ways to define the distance between two convex bodies (see, e.g.,
[20]), and each gives rise to a different notion of approximation. While Hausdorff distance is commonly
studied, it is not sensitive to the shape of the convex body. In this paper we will consider a common
linear-invariant distance, called the Banach-Mazur distance.

Given two convex bodies X and Y in real n-dimensional space, Rn, both of which contain the origin
in their interiors, their Banach-Mazur distance, denoted distBM(X,Y ), is defined to be the minimum
value of lnλ such that there exists a linear transformation T such that TX ⊆ Y ⊆ λ · TX. Given δ > 0,
we say that Y is an Banach-Mazur δ-approximation of X if distBM(X,Y ) ≤ δ. T will be the identity
transformation in our constructions. Given a convex body K in Rn and ε > 0, we seek a convex polytope
P such that K ⊆ P ⊆ (1 + ε)K. Thus, distBM (K,P ) ≤ ln(1 + ε), which is approximately ε for small ε.
The scaling is taking place about the origin, and it is standard practice to assume that K is well-centered
about the origin (defined below) in the sense that the origin is not too close to K’s boundary. Note that
the Banach-Mazur measure is sensitive to K’s shape, being more accurate where K is narrower and less
accurate where K is wider.

The principal question is, given n and ε > 0, what is the minimum number of vertices (or facets)
needed to ε-approximate any convex body K in Rn by a polytope in the above sense. This problem has
been well studied. Existing bounds hold under the assumption that K is well-centered. We say that
a bound is nonuniform if it holds for all ε ≤ ε0, where ε0 depends on K. Typical nonuniform bounds
assume that K is smooth, and the value of ε0 depends on K’s smoothness. Our focus will be on uniform
bounds, where ε does not depend on K.

Dudley [28] and Bronshtein and Ivanov [23] provided uniform bounds in the Hausdorff context, but
their results can be recast under Banach-Mazur, where they imply the existence of an approximating
polytope with nO(n)/ε(n−1)/2 vertices (facets). For smooth convex bodies, Böröczky [20, 37] established
a nonuniform bound of 2O(n)/ε(n−1)/2. Barvinok [17] improved the bound in the uniform setting for
symmetric convex bodies. Ignoring a factor that is polylogarithmic in 1/ε, his bound is 2O(n)/εn/2. Finally,
Naszódi, Nazarov, and Ryabogin obtained a worst-case optimal approximation of size 2O(n)/ε(n−1)/2 [52].
Their bound is uniform and holds for general convex bodies.

While it is optimal, the construction given by Naszódi et al. [52] can be improved upon. In this
paper, we present an alternative construction of an ε-approximation of a convex body K in Rn in the
Banach-Mazur setting. Our construction is superior in two ways. The construction presented in [52] is
very clever, but it involves the combination of a number of technical elements (transforming the body to
standard position, rounding it, computing a Bronshteın-Ivanov net, and filtering to reduce the sample
size). In contrast, ours is very simple. We employ a greedy process that samples points from K’s interior,
and the final approximation is just the convex hull of these points. Second, our construction is more
powerful in that it provides an additional covering structure for K. Each sample point is associated
with a centrally symmetric convex body, and together these bodies form a cover of K such that their
union lies within the expansion (1 + ε)K. As a direct consequence we obtain the fastest approximation
algorithm to date for the closest vector problem (CVP) that operates in any norm. We believe that
there may be many other applications of the resulting data structure.

1.1 Our Results Before presenting our results, let us introduce some terminology. Throughout, we
assume that the convex body K is well-centered in the sense that the origin is centrally located within
K. For example, we could assume that the origin coincides with K’s centroid. This is a relatively strong
requirement, and as we will discuss in Section 2.2, there are a number of weaker notions of centrality



that suffice for our purposes. For example, it suffices to assume vol(K ∩ −K)/ vol(K) ≥ 2−O(n) [26].
Our first result involves the existence of concise coverings. Given a convex body K that contains the

origin in its interior and reals c ≥ 1 and ε > 0, a (c, ε)-covering of K is a collection Q of bodies whose
union covers K such that a factor-c expansion of each Q ∈ Q about its centroid lies within (1 + ε)K (see
Figure 15(a) on page 21). Coverings have emerged as an important tool in convex approximation. They
have been applied to several problems in the field of computational geometry, including combinatorial
complexity [6, 8, 10], approximate nearest neighbor searching [9], and computing the diameter and
ε-kernels [7].

Given a convex body in Rn, constant c ≥ 1 and parameter ε > 0, what is the minimum size of a
(c, ε)-covering as a function of n and ε? Abdelkader and Mount considered the problem in spaces of
constant dimension [1]. They did not analyze their bounds for the high-dimensional case, but based
on results from [9], it can be shown that their results yield an upper bound of nO(n)/ε(n−1)/2 in Rn.
A number of special cases have been explored in the high dimensional case. Naszódi and Venzin
demonstrated the existence of (2, ε)-coverings of size 2O(n)/εn/2 when K is an `p ball for any fixed
p ≥ 2 [53]. For the L∞ ball, Eisenbrand, Hähnle, and Niemeier showed the existence of (2, ε)-coverings
of size 2O(n)/ logn(1/ε), consisting of axis-parallel rectangles [32]. They also presented a nearly matching
lower bound of 2−O(n)/ logn(1/ε), even when the covering consisted of parallelepipeds.

In this paper we establish the following bound on the size of (c, ε)-coverings, which holds for any
well-centered convex body in Rn.

Theorem 1.1. Let 0 < ε ≤ 1
16 be a real parameter and c ≥ 2 be a constant. Let K ⊆ Rn be a well-

centered convex body. Then there is a (c, ε)-covering for K consisting of at most 2O(n)/ε(n−1)/2 centrally
symmetric convex bodies.

It is not difficult to prove a lower bound of 2−O(n)/ε(n−1)/2 on the size of any (2, ε)-covering for
Euclidean balls (see, e.g., Naszódi and Venzin [53]). Therefore, the above bound is optimal with respect
to ε-dependencies. In Section 4.1 (Theorem 4.1), we prove that for any constant c ≥ 2, our construction
is instance optimal to within a factor of 2O(n). In Section 6.2, we present a randomized algorithm that
constructs a slightly larger covering (by a factor of log2(1/ε)). The construction assumes that access to
K is provided by a weak membership oracle (defined in Section 6).

We present a number of applications of this result. First, in Section 5 we show that the convex hull
of the center points of the covering elements yields an approximation in the Banach-Mazur metric.

Theorem 1.2. Given a well-centered convex body K and an approximation parameter ε > 0, there exists
a polytope P consisting of 2O(n)/ε(n−1)/2 vertices (facets) such that K ⊂ P ⊂ K(1 + ε).

Next, we present applications to the Closest Vector Problem (CVP). In this problem, an n-dimensional
lattice L in Rn is given (that is, the set of integer linear combinations of n basis vectors) together with a
target vector t ∈ Rn. The problem is to return a vector in L closest to t under some given norm. This
problem has applications to cryptography [41, 55, 56], integer programming [25, 26, 45], and factoring
polynomials over the rationals [44], among several other problems. The problem is NP-hard for any `p
norm [34] and cannot be solved exactly in 2(1−γ)n time for constant γ > 0, under certain conditional
hardness assumptions [18].

This problem has a considerable history. The first solution proposed to the CVP under the `∞ norm
takes 2O(n3) time through integer linear programming [45], which was later improved to nO(n) [42]. For
the `2 norm, Micciancio and Voulgaris presented an algorithm that runs in single exponential 2O(n)

time [49], and currently the fastest algorithm for exact Euclidean CVP is by Aggarwal, Dadush, and
Stephens-Davidowitz [3] and runs in 2n+o(n) time. However, solving the CVP problem exactly in single



exponential time for norms other than Euclidean remains an open problem. (For additional information,
see [40].) Dadush, Peikert, and Vempala [26] considered CVP and the related Shortest Vector Problem
(SVP) in the context of (possibly asymmetric) norms defined by convex bodies. Their work demonstrated
a rich connection between lattice algorithms and convex geometry.

In the approximate version of the CVP problem ((1 + ε)-CVP), we are also given a parameter ε > 0,
and the goal is to find a lattice vector whose distance to t is at most 1 + ε times the optimum. CVP is
NP-hard to approximate [5, 27] and conditional hardness results show that for p ≥ 1 CVP in `p is hard
to approximate in 2(1−γ)n time for constant γ > 0, except when p is even [2].

The randomized sieving approach of Ajtai, Kumar, and Sivakumar [4] was extended to approximate
CVP for `p norms by Blömer and Naewe [19] and to the general case of well-centered norms by Dadush [24].
These algorithms run in time and space 2O(n)/ε2n. Building on the Voronoi cell approach [26, 49], Dadush
and Kun [25] presented deterministic algorithms that improved the running time to 2O(n)/εn and space
to Õ(2n).

Eisenbrand, Hähnle, and Niemeier [32] and Naszódi and Venzin [53] have explored the use of
(c, ε)-coverings of the unit ball in the norm to obtain efficient algorithms for approximate CVP by
“boosting” a weak constant-factor approximation to a strong (1 + ε)-approximation. By exploiting the
unique properties of hypercubes, Eisenbrand et al. [32] improved the running time for the `∞ norm to
2O(n) logn(1/ε) time. Naszódi and Venzin [53] extended this approach to `p norms. The running time of
their algorithm is 2O(n)/εn/2 for p ≥ 2 and 2O(n)/εn/p for 1 ≤ p ≤ 2. The constants in the 2O(n) term in
the running time depend on p.

By applying our covering within existing algorithms, we obtain the fastest algorithm to date for
(1 + ε)-approximate CVP that operates in any norm. The algorithm is randomized and runs in single
exponential time, 2O(n)/ε(n−1)/2. (Following standard practice, we ignore factors that are polynomial in
the input size.) The result is stated formally below.

Theorem 1.3. There is a randomized algorithm that, given any well-centered convex body K and lattice
L, solves the (1 + ε)-CVP problem in the norm defined by K, in 2O(n)/ε(n−1)/2-time and O(2n)-space,
with probability at least 1− 2−n.

Finally, through a reduction from approximate CVP to approximate integer programming (IP) due
to Dadush [24], we present a randomized algorithm for approximate IP (see Theorem 6.1 in Section 6.3).

1.2 Techniques As mentioned above, coverings are a powerful tool in obtaining efficient solutions
to approximation problems involving convex bodies. The fundamental problem tackled here involves
the sizes of (c, ε)-coverings for general convex bodies in Rn and especially the dependencies on ε. Our
approach employs a classical concept from convex geometry, called a Macbeath region [46]. Given a
convex body K and a point x ∈ K, the Macbeath region MK(x) is the largest centrally symmetric
body centered at x and contained in K. Macbeath regions have found numerous uses in the theory of
convex sets and the geometry of numbers (see Bárány [15] for an excellent survey). They have also been
applied to several problems in the field of computational geometry, including lower bounds [12, 13, 22],
combinatorial complexity [6, 8, 10, 29, 51], approximate nearest neighbor searching [9], and computing
the diameter and ε-kernels [7].

In the context of (c, ε)-coverings, the obvious (and indeed maximal) choice for a covering element
centered at any point x is to take the Macbeath region centered at x with respect to the expanded
body (1 + ε)K, and then scale it by a factor of 1

c about x. The construction and analysis of such
Macbeath-based coverings is among the principal contributions of this paper. In their work on the
economical cap cover, Bárány and Larman observed how Macbeath regions serve as an efficient agent
for covering the region near the boundary of a convex body [16]. While Macbeath regions can be quite



elongated, especially near the body’s boundary, they behave in many respects like fixed-radius balls
in a metric space. (Indeed, Vernicos and Walsh proved that shrunken Macbeath regions are similar in
shape to fixed-radius balls in the Hilbert geometry induced by K [1, 63].) This leads to a very simple
covering construction based on computing a maximal set of points such that the suitably shrunken
Macbeath regions centered at these points are pairwise disjoint. The covering results by simply scaling
these Macbeath regions uniformly so they cover K.

The difficulty arises in proving that this simple construction yields the desired bound on the size of
the covering. A natural approach based on random sampling exploits the fact that if Macbeath regions
have sufficiently large volume, then disjointness implies that there cannot be many of them. But this
fails because some Macbeath regions may have very small volume. What saves us is the observation that
small Macbeath regions arise only in areas where the body’s curvature is high, and this cannot be the
case everywhere. This intuition can be made formal by exploring the relationship between Macbeath
regions in the original body K and its polar, K∗ (see Section 2.2 for definitions). It can be shown that
their volumes exhibit a reciprocal relationship, similar to the notion of the Mahler volume (see, e.g., [6]).
As a consequence, for each Macbeath region in K of small volume, there is a Macbeath region in K∗ of
large volume. Thus, by randomly sampling in both K and K∗, it is possible to hit all the Macbeath
regions.

Generalizing this to the high-dimensional setting involves overcoming a number of technical difficulties.
A straightforward generalization of the methods of [6] yields a covering of size nO(n)/ε(n−1)/2. A critical
step in that analysis involves relating the volumes of two (n− 1)-dimensional convex bodies that arise
by projecting caps. In earlier works, where the dimension was assumed to be a constant, a crude bound
sufficed. But in the high-dimensional setting, we need to be more careful with factors that depend
exponentially on the dimension. A key insight of this paper is that it is possible to reduce these factors
through the use of a novel construction involving the difference body. (See Lemma 3.1 in Section 3.1.)
Through the use of this more refined geometric analysis, we establish a Mahler-like relationship in
Sections 3 (particularly Lemmas 3.3 and 3.4). We apply this in Section 4.2 to obtain our bounds on the
size of the covering. In Section 5 we show how this leads to an ε-approximation in the Banach-Mazur
measure. The sampling process is described in Section 6 along with applications.

2 Preliminaries

In this section, we introduce terminology and notation, which will be used throughout the paper. This
section can be skipped on first reading (moving directly to Section 3).

2.1 Lengths and Measures Given vectors u, v ∈ Rn, let 〈u, v〉 denote their dot product, and let
‖v‖ =

√
〈v, v〉 denote v’s Euclidean length. Throughout, we will use the terms point and vector

interchangeably. Given points p, q ∈ Rn, let ‖pq‖ = ‖p− q‖ denote the Euclidean distance between them.
Let vol(·) and area(·) denote the n-dimensional and (n− 1)-dimensional Lebesgue measures, respectively.

Throughout, K ⊆ Rn will denote a full-dimensional compact convex body with the origin O in its
interior. Let ‖x‖K = inf{s ≥ 0 : x ∈ sK} denote K’s associated Minkowski functional, or gauge function.
If K is centrally symmetric, its gauge function defines a norm, but we will abuse notation and use the
term “norm” even when K is not centrally symmetric. Given ε > 0, define Kε = (1 + ε)K to be a
uniform scaling of K by 1 + ε.

Given a convex body K ⊆ Rn, its difference body, denoted ∆(K), is defined to be the Minkowski sum
K ⊕−K. The difference body is convex and centrally symmetric and satisfies the following property.

Lemma 2.1. (Rogers and Shephard [57]) Given a convex body K ⊆ Rn, vol(∆(K)) ≤ 4n vol(K).



2.2 Polarity and Centrality Properties Given a bounded convex body K ⊆ Rn that contains the
origin O in its interior, define its polar, denoted K∗, to be the convex set

K∗ = {u : 〈u, v〉 ≤ 1, for all v ∈ K}.

The polar enjoys many useful properties (see, e.g., Eggleston [31]). For example, it is well known that
K∗ is bounded and (K∗)∗ = K. Further, if K1 and K2 are two convex bodies both containing the origin
such that K1 ⊆ K2, then K∗2 ⊆ K∗1 .

Given a nonzero vector v ∈ Rn, we define its “polar” v∗ to be the hyperplane that is orthogonal to v
and at distance 1/‖v‖ from the origin, on the same side of the origin as v. The polar of a hyperplane is
defined as the inverse of this mapping. We may equivalently define K∗ as the intersection of the closed
halfspaces that contain the origin, bounded by the hyperplanes v∗, for all v ∈ K.

Given a convex body K ⊆ Rn and x ∈ int(K), there are many ways to characterize the property
that x is “central” within K [38, 61]. In this section we explore a few relevant measures of centrality
with respect to x. By considering the body K − x, we may assume that x is the origin.

First, define K’s Mahler volume to be the product vol(K) · vol(K∗). The Mahler volume is well
studied (see, e.g. [47, 59, 60]). It is invariant under linear transformations, and it depends on the location
of the origin within K. In the following definitions, any fixed constant may be used in the O(n) term.

Santaló property: The Mahler volume of K is at most 2O(n) · ω2
n, where ωn denotes the volume of the

n-dimensional unit Euclidean ball (ωn = πn/2/Γ
(
n
2 + 1

)
).

Winternitz property: For any hyperplane passing through the origin, the ratio of the volume of the
portion of K on each side of the hyperplane to the volume of K is at least 2−O(n).

Kovner-Besicovitch property: The ratio of the volume of vol(K ∩ −K)/ vol(K) ≥ 2−O(n).

Following Dadush, Peikert, and Vempala [26], we say that K is well-centered with respect to a point
x ∈ int(K) if K − x satisfies the Kovner-Besicovitch property. For our purposes, however, any of the
above can be used, as shown in the following lemma.

Lemma 2.2. The three centrality properties (Santaló, Winternitz, and Kovner-Besicovitch) are equivalent
in the sense that a convex body K ⊆ Rn that satisfies any one of them satisfies the other two subject to a
change in the 2O(n) factor. Further, if the origin coincides with K’s centroid, these properties are all
satisfied.

Let us first introduce some notation. Given a hyperplane h, let h+ and h− denote its two halfspaces.
Given 0 < δ < 1

2 , let h be a hyperplane that intersects K such that vol(K ∩ h+) = δ · vol(K). Define the
δ-floating body, denoted Kδ, to be the intersection of halfspaces h− for all such hyperplanes h. For t > 0,
define the t-Santaló region St ⊆ K to be the set of points x ∈ K such that the Mahler volume of K
with respect to x is at most t ω2

n, where ωn denotes the volume of the n-dimensional unit Euclidean ball.
Both the floating body and the Santaló region (when nonempty) are convex subsets of K, and Meyer
and Werner showed that they satisfy the following property.

Lemma 2.3. (Meyer and Werner [48]) For all 0 < δ < 1
2 , Kδ ⊆ St, where t = 1/(4δ(1− δ)).

We can now prove Lemma 2.2 by showing that Kovner-Besicovitch implies Winternitz, Winternitz
implies Santaló, and Santaló implies Kovner-Besicovitch.



Proof. First, suppose that K satisfies Kovner-Besicovitch, that is, vol(K ∩ −K) ≥ 2−O(n) · vol(K).
Consider any hyperplane h passing through the origin. As K ∩ −K is centrally symmetric, half of
this body lies on each side of h. Thus, the volume of the portion of K on either side of h is at least
2−O(n) · vol(K), and so K satisfies the Winternitz property.

Next, suppose that K satisfies Winternitz. Observe that any point outside the floating body Kδ is
contained in a halfspace h+ such that vol(K ∩ h+) ≤ δ · vol(K). By Winternitz, all halfspaces containing
the origin have volume at least 2−O(n) · vol(K), and so the origin is contained within the floating body
Kδ for δ = 2−O(n). It follows from Lemma 2.3 that the origin lies within the Santaló region Kt for some
t = 2O(n). Thus, K satisfies the Santaló property.

Finally, suppose that K satisfies Santaló. Milman and Pajor [50] showed that in this case,
vol(K ∩ −K)/ vol(K) ≥ 2−O(n), implying that K satisfies Kovner-Besicovitch.

Milman and Pajor also show that if the origin coincides with K’s centroid, then K satisfies Kovner-
Besicovitch, implying that it satisfies the other properties as well.

These latter two properties were, in fact, established much earlier and with much better constants
than implied by Lemma 2.2. The famous Blaschke-Santaló inequality says that the Mahler volume with
respect to the centroid is at most ω2

n [47, 59, 60], and Grünbaum [39] proved that for any hyperplane
passing through the centroid, the ratio of the volume of K on one side of the hyperplane to the volume
of K is at least 1

e . However, the bounds provided by Lemma 2.2 suffice for our purposes.

Lemma 2.4. Let K ⊆ Rn be a convex body with the centroid at the origin. Then K satisfies the following
properties.

(a) Santaló property: The Mahler volume of K is at most ω2
n [47].

(b) Winternitz property: For any hyperplane passing through the centroid, the ratio of the volume of
K on one side of the hyperplane to the volume of K is at least 1/e [39].

(c) Kovner-Besicovitch property: The ratio of the volume of K ∩ −K to the volume of K is at least
1/2n [50].

Lower bounds on the Mahler volume have also been extensively studied [21, 43, 54]. Recalling the
value of ωn from the Santaló property, the following lower bound holds irrespective of the location of the
origin within a convex body [21].

Lemma 2.5. Given a convex body K ⊆ Rn whose interior contains the origin, vol(K) · vol(K∗) ≥
2−O(n) · ω2

n.

2.3 Caps, Rays, and Relative Measures Consider a compact convex body K in n-dimensional
space Rn with the origin O in its interior. A cap C of K is defined to be the nonempty intersection of K
with a halfspace. Letting h1 denote a hyperplane that does not pass through the origin, let capK(h1)
denote the cap resulting by intersecting K with the halfspace bounded by h1 that does not contain
the origin (see Figure 1(a)). Define the base of C, denoted base(C), to be h1 ∩K. Letting h0 denote a
supporting hyperplane for K and C parallel to h1, define an apex of C to be any point of h0 ∩K.

We define the absolute width of cap C to be dist(h1, h0). When a cap does not contain the
origin, it will be convenient to define distances in relative terms. Define the relative width of such
a cap C, denoted widK(C), to be the ratio dist(h1, h0)/ dist(O, h0) and, to simplify notation, define
widK(h1) = widK(capK(h1)). Observe that as a hyperplane is translated from a supporting hyperplane
to the origin, the relative width of its cap ranges from 0 to a limiting value of 1.
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Figure 1: Convex body K and polar K∗ with definitions used for width and ray.

We also characterize the closeness of a point to the boundary in both absolute and relative terms.
Given a point p1 ∈ K, let p0 denote the point of intersection of the ray Op1 with the boundary of K.
Define the absolute ray distance of p1 to be ‖p1p0‖, and define the relative ray distance of p1, denoted
rayK(p1), to be the ratio ‖p1p0‖/‖Op0‖. Relative widths and relative ray distances are both affine
invariants, and unless otherwise specified, references to widths and ray distances will be understood to
be in the relative sense.

We can also define volumes in a manner that is affine invariant. Recall that vol(·) denotes the
standard Lebesgue volume measure. For any region Λ ⊆ K, define the relative volume of Λ with respect
to K, denoted volK(Λ), to be vol(Λ)/ vol(K).

With the aid of the polar transformation we can extend the concepts of width and ray distance to
objects lying outside of K. Consider a hyperplane h2 parallel to h1 that lies beyond the supporting
hyperplane h0 (see Figure 1(a)). It follows that h∗2 ∈ K∗, and we define widK(h2) = rayK∗(h

∗
2) (see

Figure 1(b)). Similarly, for a point p2 /∈ K that lies along the ray Op1, it follows that the hyperplane p∗2
intersects K∗, and we define rayK(p2) = widK∗(p

∗
2). By properties of the polar transformation, it is easy

to see that widK(h2) = dist(h0, h2)/ dist(O, h2). Similarly, rayK(p2) = ‖p0p2‖/‖Op2‖. Henceforth, we
will omit references to K when it is clear from context.

Some of our results apply only when we are sufficiently close to the boundary of K. Given α ≤ 1
2 ,

we say that a cap C is α-shallow if wid(C) ≤ α, and we say that a point p is α-shallow if ray(p) ≤ α.
We will simply say shallow to mean α-shallow, where α ≤ 1

2 is a sufficiently small constant.
Given any cap C and a real λ > 0, we define its λ-expansion, denoted Cλ, to be the cap of K cut by

a hyperplane parallel to the base of C such that the absolute width of Cλ is λ times the absolute width
of C. (Notice that the expansion of a cap may contain the origin, and indeed, if the expansion is large
enough, it may be the same as K.)

We now present a number of useful technical results on ray distances and cap widths in both their
absolute and relative forms.

Lemma 2.6. Let p be a point in a cap C of K. Then ray(p) ≤ wid(C).

Proof. Let h be the hyperplane passing through the base of C, and let h0 be the supporting hyperplane
of K parallel to h at C’s apex. Let q, p0, and q0 denote the points of intersection of the ray Op with
h, ∂K, and h0, respectively. Since p ∈ C, the order of these points along the ray is 〈O, q, p, p0, q0〉. By



considering the hyperplanes parallel to h passing through these points, we have

ray(p) =
‖pp0‖
‖Op0‖

≤ ‖qp0‖
‖Op0‖

≤ ‖qp0‖+ ‖p0q0‖
‖Op0‖+ ‖p0q0‖

=
‖qq0‖
‖Oq0‖

=
dist(h, h0)

dist(O, h0)
= wid(C),

as desired.

There are two natural ways to associate a cap with any point p ∈ K. The first is the minimum
volume cap, which is any cap whose base passes through p of minimum volume among all such caps.
For the second, assume that p 6= O, and let p0 denote the point of intersection of the ray Op with
the boundary of K. Let h0 be any supporting hyperplane of K at p0. Take the cap C induced by a
hyperplane parallel to h0 passing through p. As shown in the following lemma this is the cap of minimum
width containing p.

Lemma 2.7. For any p ∈ K \{O}, consider the cap C defined above. Then wid(C) = ray(p) and further,
C has the minimum width over all caps that contain p.

Proof. Let h denote the hyperplane passing through p parallel to h0 (defined above). By similar triangles,
we have

wid(C) =
dist(h, h0)

dist(O, h0)
=
‖pp0‖
‖Op0‖

= ray(p).

By Lemma 2.6, for any cap C ′ that contains p, ray(p) ≤ wid(C ′), and hence wid(C) ≤ wid(C ′).

The following lemma gives a simple lower and upper bound on the absolute volume of a cap.

Lemma 2.8. Let C be a 1
2 -shallow cap, let a = area(base(C)), and let w denote C’s absolute width.

Then aw/n ≤ vol(C) ≤ 2n−1aw.

Proof. Let p be the apex of C and base(C) denote its base. Let P = conv(base(C) ∪ {p}). Clearly,
P ⊆ C and vol(P ) = aw/n, which yields the lower bound. To see the upper bound, observe that C lies
within the generalized infinite cone whose apex is O and base is base(C). Because wid(C) ≤ 1

2 , it follows
that the area of any slice of C cut by a hyperplane parallel to base(C) exceeds the area of base(C) by a
factor of at most 2n−1. The upper bound follows from elementary geometry.

An easy consequence of convexity is that, for λ ≥ 1, Cλ is a subset of the region obtained by scaling
C by a factor of λ about its apex. This implies the following lemma.

Lemma 2.9. Given any cap C and a real λ ≥ 1, vol(Cλ) ≤ λn vol(C).

The following lemma is a technical result, which shows that if a ray hits the interior of the base of a
cap of width at least ε, then it hits the interior of the base of a cap of width exactly ε that is contained
in the original.

Lemma 2.10. Let 0 < ε < 1, and let K ⊆ Rn be a convex body containing the origin in its interior. Let
r be a ray shot from the origin, and let D be a cap of K of width at least ε such that ray r intersects the
interior of its base. Then there exists a cap E ⊆ D of width ε such that ray r intersects the interior of
its base.
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Figure 2: Proof of Lemma 2.10.

Proof. Let p be the point of intersection of ray r with the boundary of K. Let F ⊆ D be the cap whose
base passes through p and is parallel to the base of D. We now consider two cases.

If the width of cap F is less than ε, then we let E be the cap of width ε obtained by translating the
base of F parallel to itself (towards the base of D, as shown in Figure 2(a)). Clearly E ⊆ D and satisfies
the conditions specified in the lemma.

Otherwise, if the width of cap F is at least ε, then intuitively, we can rotate its base about p
(shrinking cap F in the process), until its width is infinitesimally smaller than ε (Figure 2(b)). More
formally, let uF denote the normal vector for F ’s base and let up denote the (any) surface normal vector
to K at p (both unit length). Since p is on the boundary, the cap orthogonal to up and passing through
p has width zero. Since F has width at least ε, uF 6= up.

Considering the 2-dimensional linear subspace spanned by uF and up, we rotate continuously from
uF to up, and consider the hyperplane passing through p orthogonal to this vector. Clearly, the width of
the associated cap varies continuously from wid(F ) to zero. Thus, there must be an angle where the cap
width is infinitesimally smaller than ε. We can expand this cap by translating its base parallel to itself
to obtain a cap E of width ε, which satisfies all the conditions specified in the lemma.

2.4 Macbeath Regions Given a convex body K and a point x ∈ K, and a scaling factor λ > 0, the
Macbeath region Mλ

K(x) is defined as

Mλ
K(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1
K(x) is the intersection of K with the reflection of K around x, and so M1

K(x)
is centrally symmetric about x. Indeed, it is the largest centrally symmetric body centered at x and
contained in K. Furthermore, Mλ

K(x) is a copy of M1
K(x) scaled by the factor λ about the center x

(see the right side of Figure 14). We will omit the subscript K when the convex body is clear from the
context.

We now present lemmas that encapsulate standard properties of Macbeath regions. The first lemma
implies that a (shrunken) Macbeath region can act as a proxy for any other (shrunken) Macbeath region
overlapping it [22, 35]. Our version uses different parameters and is proved in [9] (Lemma 2.4).

Lemma 2.11. Let K be a convex body and let λ ≤ 1
5 be any real. If x, y ∈ K such that Mλ(x)∩Mλ(y) 6= ∅,

then Mλ(y) ⊆M4λ(x).

The following lemmas are useful in situations when we know that a Macbeath region overlaps a
cap of K, and allow us to conclude that a constant factor expansion of the cap will fully contain the
Macbeath region. The first applies to shrunken Macbeath regions and the second to Macbeath regions
with any scaling factor. The proof of the first appears in [8] (Lemma 2.5), and the second is an immediate
consequence of the definition of Macbeath regions.



Lemma 2.12. Let K be a convex body. Let C be a cap of K and x be a point in K such that
C ∩M1/5(x) 6= ∅. Then M1/5(x) ⊆ C2.

Lemma 2.13. Let K be a convex body and λ > 0. If x is a point in a cap C of K, then Mλ(x)∩K ⊆ C1+λ.

Points in a shrunken Macbeath region are similar in many respects. For example, they have similar
ray distances.

Lemma 2.14. Let K be a convex body. If x is a 1
2 -shallow point in K and y ∈ M1/5(x), then

ray(x)/2 ≤ ray(y) ≤ 2 ray(x).

Proof. Let Cx denote the minimum width cap for x. By Lemma 2.7, wid(Cx) = ray(x). Also,
by Lemma 2.12, we have M1/5(x) ⊆ C2

x and so y ∈ C2
x. It follows from Lemma 2.6 that

ray(y) ≤ wid(C2
x) = 2 wid(Cx). Thus ray(y) ≤ 2 ray(x), which proves the second inequality. To prove

the first inequality, note that this follows trivially unless ray(y) ≤ 1
4 (since ray(x) ≤ 1

2). If ray(y) ≤ 1
4 ,

consider the minimum width cap Cy for y. By Lemma 2.7, wid(Cy) = ray(y). Also, by Lemma 2.12,
we have M1/5(x) ⊆ C2

y and so x ∈ C2
y . It follows from Lemma 2.6 that ray(x) ≤ wid(C2

y ) = 2 wid(Cy).
Thus ray(x) ≤ 2 ray(y), which completes the proof.

The following lemma relates a cap with the Macbeath region centered at the centroid of the cap’s
base.

Lemma 2.15. (Bárány [14]) Given a convex body K ⊆ Rn, let C be a 1
3 -shallow cap of K, and let p

be the centroid of base(C). Then C ⊆M2n(p).

Lemma 2.16. Let 0 < β < 1 be any constant. Let K ⊆ Rn be a well-centered convex body, p ∈ K,
and C be the minimum volume cap associated with p. If C contains the origin or wid(C) ≥ β, then
volK(M(p)) ≥ 2−O(n).

Proof. We claim that K satisfies the Winternitz property with respect to p. Note this is equivalent to
the claim that volK(C) ≥ 2−O(n).

We consider two cases. First, suppose that C contains the origin. Since K is well-centered,
by Lemma 2.2, K satisfies the Winternitz property with respect to the origin. It follows that
volK(C) ≥ 2−O(n). Otherwise, if C does not contain the origin, then since the width of C is at least β,
the expanded cap C1/β contains the origin. By Lemma 2.9, vol(C1/β) ≤ 2O(n) vol(C). Again, using the
fact that K satisfies the Winternitz property with respect to the origin, we have volK(C1/β) ≥ 2−O(n).
Thus, in both cases, volK(C) ≥ 2−O(n), which proves the claim.

Since K satisfies the Winternitz property with respect to p, by Lemma 2.2, it satisfies the Kovner-
Besicovitch property with respect to p. Thus volK(M(p)) = volK((K−p)∩ (p−K)) ≥ 2−O(n), as desired.

Using the above two lemmas, we can relate the volumes of the Macbeath region and cap.

Lemma 2.17. Let K ⊆ Rn be a convex body, p ∈ K, and C be the minimum volume cap associated with
p. We have

2−O(n) · vol(C) ≤ vol(M(p)) ≤ 2 · vol(C).



Proof. The second inequality holds easily because half of M(p) lies inside C. To prove the first inequality,
we consider two cases.

First, suppose that C is (1/3)-shallow, treating the centroid of K as the origin. Let B = base(C), let
a = area(B) denote its (n− 1)-dimensional volume, and let B′ = M(p) ∩B. Treating p as the origin of
the coordinate system, by definition of Macbeath regions, B′ = B ∩ −B. By a well-known property of
minimum volume caps, p is the centroid of the base B [35]. By applying Lemma 2.2 (to the hyperplane
containing B) we have area(B′) ≥ a/2O(n).

Let x denote the apex of C, and let x′ be the farthest point on segment px that is contained in M(p).
By Lemma 2.15, ‖px′‖ ≥ ‖px‖/2n. By convexity, the generalized cone P = conv(B′ ∪ {x′}) is contained
within M(p). Letting w denote the absolute width of C, the height of this cone is at least w/2n. Thus

vol(M(p)) ≥ vol(P ) ≥ area(B′) · w/2n
n

≥ (a/2O(n)) · w/2n
n

=
aw

n22O(n)
.

By Lemma 2.8, vol(C) ≤ 2n−1aw, and thus,

vol(M(p)) ≥ 2−O(n) · vol(C),

as desired.
Next, consider the case that the width of C is at least 1/3, treating the centroid of K as the origin.

By Lemma 2.2, K is well-centered with respect to the centroid. It follows from Lemma 2.16 that
volK(M(p)) ≥ 2−O(n). That is, vol(M(p)) ≥ 2−O(n) vol(K) ≥ 2−O(n) vol(C), which completes the proof.

2.5 Similar Caps We say that two caps C1 and C2 are λ-similar for λ ≥ 1, if C1 ⊆ Cλ2 and C2 ⊆ Cλ1 .
If two caps are λ-similar for constant λ, we say that the caps are similar. The definition extends to more
than two caps in natural way.

In order to establish a relationship between points in K and its polar K∗, we show next that if two
rays stab a given shrunken Macbeath region near K∗’s boundary, the points lying on these rays and
just outside of K∗ induce similar caps in K. Consider any y ∈ K∗ such that ray(y) ≤ ε

32 . Let z 6∈ K∗

be a point on any ray r that intersects M1/5(y) such that ray(z) = ε. The cap of K induced by the
hyperplane z∗ is called y’s representative cap in K.

Lemma 2.18. Let ε ≤ 1
16 . Let y ∈ K∗ such that ray(y) ≤ ε

32 . Consider any two rays r and r′ shot from

the origin through M1/5(y). Let z /∈ K∗ be the point on r such that ray(z) = ε and let x /∈ K∗ be a point
on r′ such that ε ≤ ray(x) ≤ 2ε. Let E and C be the caps of K induced by the hyperplanes z∗ and x∗,
respectively. Then the caps C and E are 8-similar (see Figure 3).

We begin with some definitions and two technical lemmas which will be useful for proving Lemma 2.18.
Given any convex body K, a point z 6∈ K naturally defines an infinite convex cone. The inner cone,
denoted icone(K, z), is the intersection of all the halfspaces that contain K whose bounding hyperplanes
pass through z (see Figure 9). Equivalently, icone(K, z) is the set of points p such that the ray zp
intersects K.

Given a point z exterior to K, the outer cone, denoted ocone(K, z), is defined analogously as the
intersection of halfspaces passing through z that do not contain K (see Figure 4). It is easy to see that,
ocone(K, z) is the reflection of icone(K, z) about z.

Lemma 2.19. Let K be a convex body with the origin O in its interior. If u ∈ ocone(K, z) then
capK∗(z

∗) ⊆ capK∗(u
∗).
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Figure 4: Statement of Lemma 2.19.

Proof. By standard properties of the polar transformation, a hyperplane h separates z from K if and
only if the point h∗ lies in the cap capK∗(z

∗). Since any such hyperplane h also separates u from K, it
follows that capK∗(z

∗) ⊆ capK∗(u
∗).

Lemma 2.20. Let α ≤ 1
8 . Let y ∈ K∗ be an α-shallow point. Consider two rays r and r′ shot from the

origin through M1/5(y) (see Figure 5). Let z 6∈ K∗ be an α-shallow point on r and let u 6∈ K∗ be a point
on r′ such that ray(u) > 4 ray(y) + 2 ray(z). Then capK(z∗) ⊆ capK(u∗).
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Figure 5: Statement of Lemma 2.20.

Proof. Let h be any hyperplane passing through z that does not intersect K∗. We will show that h
separates u from K∗. This would imply that u ∈ ocone(K∗, z), and the result would then follow from
Lemma 2.19.



Let p be any point in r∩M1/5(y). By Lemma 2.14, we have ray(p) ≤ 2 ray(y). Consider a hyperplane
h′ that is parallel to h and passes through p (see Figure 6). Let C be the cap induced by h′. Letting t
denote the point of intersection of ray r with ∂K, we have

(2.1) wid(C) ≤ ‖pz‖
‖Oz‖

=
‖pt‖+ ‖tz‖
‖Oz‖

≤ ‖pt‖
‖Ot‖

+
‖tz‖
‖Oz‖

= ray(p) + ray(z) ≤ 2 ray(y) + ray(z).

Since C intersects M1/5(y), by Lemma 2.12, the cap C2 encloses M1/5(y). Since y and z are α-shallow
for α = 1

8 , by Eq. (2.1) we have wid(C) ≤ 3/8. It follows wid(C2) < 1, and hence O lies outside C2.

Let h′′ denote the hyperplane passing through the base of C2. Since r′ intersects M1/5(y), it follows
that r′ must intersect h′′ and h. Let z′ denote the point of intersection of r′ with h. We will show that
ray(z′) ≤ 4 ray(y)+2 ray(z). Recalling from the statement of the lemma that ray(u) > 4 ray(y)+2 ray(z),
this would imply that h separates u from K∗, as desired.
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Figure 6: Proof of Lemma 2.20.

Let x and x′ denote the points of intersection of the rays r and r′, respectively, with h′′. By similar
triangles we have ray(z′) ≤ ‖x′z′‖/‖Oz′‖ = ‖xz‖/‖Oz‖. Observe that the distance between h′′ and h′ is
no more than the distance between h′ and h, and so ‖xz‖ ≤ 2‖pz‖. Combining this with Eq. (2.1), we
obtain

ray(z′) ≤ ‖xz‖
‖Oz‖

≤ 2‖pz‖
‖Oz‖

≤ 2(2 ray(y) + ray(z)) = 4 ray(y) + 2 ray(z),

which completes the proof.

We are now in a position to prove Lemma 2.18.
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Figure 7: Proof of Lemma 2.18.



Proof. By standard properties of the polar transformation ray(x) = wid(C), and so ε ≤ wid(C) ≤ 2ε.
Let z1 /∈ K∗ be the point on the ray Oz such that ray(z1) = 8ε, and let x1 /∈ K∗ be the point on the ray
Ox such that ray(x1) = 8 ray(x) (see Figure 7). Clearly, z∗1 and x∗1 induce the caps E8 and C8 in K,
respectively.

We will show that C ⊆ E8 and E ⊆ C8. Since ray(z1) = 8ε, ray(y) ≤ ε
32 and ray(x) ≤ 2ε,

we have ray(z1) > 2 ray(x) + 4 ray(y). It follows from Lemma 2.20 that C ⊆ E8. Similarly, since
ray(x1) = 8 ray(x) ≥ 8ε, ray(y) ≤ ε

32 , and ray(z) = ε, we have ray(x1) > 2 ray(z) + 4 ray(y). Again, by
Lemma 2.20, E ⊆ C8. This completes the proof.

2.6 Caps and Dual Caps It will be useful to consider the notion of a cap in a dual setting (see, e.g.,
[10, 11]). Given a convex body K ⊆ Rn and a point z that is exterior to K, we define the dual cap of K
with respect to z, denoted dcapK(z), to be the set of (n− 1)-dimensional hyperplanes that pass through
z and do not intersect K’s interior (see Figure 8). In this paper, K will be either full dimensional or one
dimension less. We define the polar of a dual cap to be the set of points that results by taking the polar
of each hyperplane of the dual cap.

O O

z

z∗

K K∗

h
h∗

dcapK(z)
(dcapK(z))

∗

Figure 8: Definition of a dual cap and its polar.

Given z exterior to K, and consider the cap of K∗ induced by the hyperplane z∗. By standard
properties of the polar transformation, a hyperplane h ∈ dcapK(z) if and only the point h∗ lies on
K∗ ∩ z∗. As an immediate consequence, we obtain the following relationship between caps and dual caps.

Lemma 2.21. Let K ⊆ Rn be a full dimensional convex body that contains the origin and let z 6∈ K.
Then (dcapK(z))∗ = base(capK∗(z

∗)).

3 Caps in the Polar: Mahler Relationship

As mentioned in Section 1.2, a central element of our analysis is establishing a Mahler-like reciprocal
relationship between volumes of caps in K and corresponding caps of K∗. While our new result is
similar in spirit to those given by Arya et al. [6] and that of Naszódi et al. [52], it is stronger than both.
Compared to [6], the dependency of the Mahler volume on dimension is improved from 2−O(n logn) to
2−O(n), which is critical in the high-dimensional setting in reducing terms of the form nO(n) to 2O(n).
Further, our result is presented in a cleaner form, which is affine-invariant. Compared to Naszódi et
al. [52], which was focused on sampling from just the boundary of K, our results can be applied to caps
of varying widths, and hence it applies to sampling from the interior of K. This fact too is critical in the
applications we consider. Our improvements are obtained by a more sophisticated geometric analysis
and our affine-invariant approach.

For the sake of concreteness, we state the lemmas of this section in terms of an arbitrary direction,
which we call “vertical,” and any hyperplane orthogonal to this direction is called “horizontal.” Since
the direction is arbitrary, there is no loss of generality.



3.1 Dual Caps and the Difference Body This subsection is devoted to a key construction in our
analysis. Given a full dimensional convex body K and a point z 6∈ K, the following lemma identifies
an (n− 1)-dimensional body Υ such that dcapΥ(z) = dcapK(z), where Υ is related to the base B of a
certain ε-width cap in the sense that Υ can be sandwiched between B and a scaled copy of the difference
body of B.
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Figure 9: Statement of Lemma 3.1.

Lemma 3.1. Let ε ≤ 1
8 . Let K be a convex body with the origin O in its interior. Let z /∈ K be a point

on the ray from the origin directed vertically upwards such that ray(z) = 2ε. Consider an ε-width cap C
above the origin whose base B intersects Oz and is horizontal. Let Hb be the hyperplane passing through
the base B, and let Υ = icone(K, z) ∩Hb. Let x denote the point of intersection of B with Oz, and let
B∆ = 5∆(B) + x. Then B ⊆ Υ ⊆ B∆ (see Figure 9).

Proof. By definition, K ⊆ icone(K, z), and so B ⊆ Υ. Thus, it suffices to show that Υ ⊆ B∆. To prove
this, we will show that K ⊆ icone(B∆, z).

Let a denote an apex of C and let a′ be the point obtained by projecting a orthogonally onto Oz
(see Figure 10). Without loss of generality, assume that ‖Oa′‖ = 1. Note that ‖xa′‖ = ε, where x is the
point of intersection of the ray Oz with the base of cap C. It is easy to check that ε ≤ ‖a′z‖ ≤ 3ε.
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Figure 10: Proof of Lemma 3.1.

For the remainder of this proof, it will be convenient to imagine that the origin is at x. Our strategy
will be to show that C ⊆ icone(2(1 + 2ε)B, z) and K \C ⊆ icone(4(1 + 2ε)∆(B), z). Since B contains the
origin, it follows easily that B ⊆ ∆(B). This implies that K ⊆ icone(4(1+2ε)∆(B), z) ⊆ icone(5∆(B), z)
since ε ≤ 1

8 . By definition of B∆, this would complete the proof.



First, we will prove that C ⊆ icone(2(1+2ε)B, z). It follows from convexity that C is contained in the
truncated portion of icone(B,O) between the hyperplane Hb and the hyperplane above Hb that is parallel
to it at distance ε (call it Ha). Note that icone(B,O)∩Ha is the (n−1)-dimensional convex body obtained
by scaling B about x by a factor of 1/(1− ε) and translating it vertically upwards by amount ε. Call this
body Ba. (Formally, Ba = (1/(1−ε))B+a′.) It is easy to see that C ⊆ icone(Ba, z). Since ‖zx‖ ≤ 2‖za′‖,
it follows that icone(Ba, z)∩Hb ⊆ 2(1/(1−ε))B. Thus C ⊆ icone(2(1/(1−ε))B, z) ⊆ icone(2(1+2ε)B, z),
where in the last containment we have used the fact that ε ≤ 1

8 .
It remains to prove that K \ C ⊆ icone(4(1 + 2ε)∆(B), z). By convexity, it follows that

K \C ⊆ icone(B, a). Define t = a′−a and B+ = conv(B∪(B+t)). We claim that K \C ⊆ icone(B+, a′).
To prove this, let p be any point in K \ C. Since K \ C ⊆ icone(B, a), it follows that ap intersects
the base B; let b denote this point of intersection. Since b ∈ B, we have b ∈ B+. Define b′ = b + t.
Clearly b′ ∈ B + t and hence b′ ∈ B+. Note that the points b, b′, a′, a form a parallelogram (because
b′ − a′ = b− a). By elementary geometry, p also lies in the 2-dimensional flat of this parallelogram and
a′p intersects bb′. Since b, b′ ∈ B+ and B+ is convex, it follows that bb′ is contained in B+. Thus a′p
intersects B+, which implies that p ∈ icone(B+, a′). This proves that K \ C ⊆ icone(B+, a′), as desired.

Next consider the cone obtained by translating icone(B+, a′) vertically upwards to z. Clearly the
resulting cone contains K \C, and since ‖zx‖ ≤ 4‖a′x‖, it follows that the intersection of this cone with
Hb is contained in 4B+. Thus K \ C ⊆ icone(4B+, z).

To complete the proof we need to relate B+ to ∆(B). To be precise, we will show that
B+ ⊆ (1 + 2ε)∆(B). Recall that B+ = conv(B ∪ (B + t)). By our earlier remarks, a ∈ Ba and
hence −t = a − a′ ∈ (1/(1 − ε))B. It follows that B + t ⊆ (1/(1 − ε))B − (−t) ⊆ ∆((1/(1 − ε))B),
where the first containment is trivial and the second is immediate from the definition of difference
bodies. Also, B ⊆ ∆((1/(1 − ε))B) holds trivially. By convexity of difference bodies, it follows
that B+ ⊆ ∆((1/(1 − ε))B). Thus B+ ⊆ (1/(1 − ε))∆(B) ⊆ (1 + 2ε)∆(B). Recalling that
K \ C ⊆ icone(4B+, z), it follows that K \ C ⊆ icone(4(1 + 2ε)∆(B), z), which completes the proof.

3.2 Relating Caps in the Primal and Polar In order to establish a Mahler-like relation between
the volumes of caps of K and K∗, it will be helpful to consider projections in one lower dimension,
n − 1. We will make use of a special case of a result due to Arya et al. [6] (Lemma 3.1). Consider a
convex body K lying on an (n− 1)-dimensional hyperplane and a point z that lies on the opposite side
of this hyperplane from the origin (see Figure 11). The polar of the dual cap of K with respect to z is
an (n− 1)-dimensional convex body on the hyperplane z∗. Letting G denote this object, the following
lemma shows that if we project both K and G onto a suitable (n− 1)-dimensional hyperplane, G is the
polar of K up to scale factor.

Lemma 3.2. (Arya et al. [6]) Let z ∈ Rn be a point that lies on a vertical ray from the origin O, and
let K be an (n− 1)-dimensional convex body whose interior intersects the segment Oz at some point x.
Further, suppose that K lies on a hyperplane orthogonal to Oz. Let G = (dcapK(z))∗ and let t be the
point of intersection of the vertical ray from O with z∗. Then G− t = α(K −x)∗, where α = ‖xz‖/‖Oz‖.

The following lemma describes the correspondence between caps in K and its polar K∗, and it
establishes the critical Mahler-type relationship between the volumes of these caps.

Lemma 3.3. Let 0 < ε ≤ 1
8 , and let K ⊆ Rn be a well-centered convex body with the origin O in its

interior. Let C be a cap of K of width at least ε. Consider the ray shot from the origin orthogonal to the
base of C, and let D be a cap of K∗ of width at least ε such that this ray intersects the interior of its
base (see Figure 12). Then

volK(C) · volK∗(D) ≥ 2−O(n)εn+1.
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Figure 12: Statement of Lemma 3.3.

Proof. Let C ′ be a cap of width 2ε whose base is parallel to the base of C and which is on the same
side of the origin as C. Clearly such a cap can be obtained by translating the base of C parallel to
itself. Note that C ′ ⊆ C2 and so, by Lemma 2.9, it follows that vol(C ′) ≤ 2O(n) · vol(C). Let r denote
the ray in the polar space, emanating from the origin of K∗ in a direction orthogonal to the base of C
(see Figure 13). Recall that r intersects the interior of the base of D. By Lemma 2.10, we can find a
cap D′ ⊆ D whose width is ε and such that ray r intersects the interior of the base of D′. It is now
easy to see that it suffices to prove the lemma with C ′ and D′ in place of C and D, respectively. As a
convenience, in the remainder of this proof, we will write C and D in place of C ′ and D′, respectively.
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Figure 13: Proof of Lemma 3.3.

As the product considered in this lemma is affine-invariant, we will apply a suitable linear
transformation to simplify the subsequent analysis. Specifically, we apply a linear transformation
in the polar space such that the base of D becomes horizontal while the ray r is directed vertically
upwards. It is easy to see that the effect of this transformation in the original space is to make the base
of cap C horizontal (because it is the polar of a point on ray r). To summarize, after the transformation,



the hyperplanes passing through the bases of the caps C and D are horizontal and above the origin and
as relative measures the widths of both caps are unchanged. Further, the ray r is directed vertically
upwards in the polar and intersects the interior of the base of D. Also, after uniform scaling, we may
assume that the absolute distance between the origin and the supporting hyperplane of cap C that is
parallel to its base is unity.

Let BC denote the base of cap C and HC denote the hyperplane passing through BC . Also, let BD
denote the base of cap D and HD denote the hyperplane passing through BD. Define z = H∗C . Note
that z lies outside K∗ on the ray from the origin directed vertically upwards and ray(z) = wid(C) = 2ε.
By Lemma 2.21, BC = (dcapK∗(z))

∗. Define Υ = icone(K∗, z) ∩HD. Clearly dcapK∗(z) = dcapΥ(z).
Thus BC = (dcapΥ(z))∗.

Let y denote the point of intersection of the vertical ray from O with BC , and let x denote the point
of intersection of the vertical ray from O with BD. Henceforth, in this proof, we will treat y as the origin
in the primal space and x as the origin in the polar space. Applying Lemma 3.2 (setting K in that
lemma to Υ), it follows that BC = αΥ∗, where α = ‖xz‖/‖Oz‖. Noting that BC is (n− 1)-dimensional
and α = Θ(ε), it follows that

area(BC) ≥ 2−O(n)εn−1 · area(Υ∗).

By Lemma 2.8, we have vol(C) ≥ 2−O(n)ε · area(BC) and vol(D) ≥ 2−O(n)ε · area(BD). Thus,

(3.2) vol(C) · vol(D) ≥ 2−O(n)ε2 · area(BC) · area(BD) ≥ 2−O(n)εn+1 · area(Υ∗) · area(BD).

By Lemma 3.1, Υ ⊆ B∆, where B∆ = 5∆(BD). Recalling from Lemma 2.1 that area(∆(BD)) ≤
4n−1 · area(BD), we have

area(Υ) ≤ area(B∆) = 5n−1 · area(∆(BD)) ≤ 5n−1 · 4n−1 · area(BD) ≤ 2O(n) · area(BD).

Substituting this bound into Eq. (3.2), we obtain

vol(C) · vol(D) ≥ 2−O(n)εn+1 · area(Υ∗) · area(Υ) ≥ 2−O(n)εn+1 · ω2
n−1,

where we have applied Lemma 2.5 to lower bound the Mahler volume in the last step. Since K is
well-centered, it follows from Lemma 2.2 that K satisfies the Santaló property, that is, vol(K) ·vol(K∗) ≤
2O(n) · ω2

n. Recalling the definition of ωn from Section 2.2, we have ωn−1/ωn ≥ O(1). Thus

volK(C) · volK∗(D) ≥ 2−O(n)εn+1,

as desired.

Finally, we present the main “take-away” of this section. This lemma shows that the bound on the
product of volumes from the previous lemma holds within the neighborhood of the ray, specifically to
any shrunken Macbeath region that intersects the ray.

Lemma 3.4. Let parameter ε, convex body K and cap C of K be as defined in Lemma 3.3. Suppose that
the ray r shot from the origin orthogonal to the base of C intersects a Macbeath region M1/5(x) of K∗,
where ray(x) = ε (see Figure 14). Then

volK(C) · volK∗(M
1/5(x)) ≥ 2−O(n)εn+1.



KO

C

K∗
O

rr

x

M1/5(x)

Figure 14: Statement of Lemma 3.4.

Proof. Let y be a point in the intersection of the ray r with M1/5(x) and let D denote the minimum volume
cap of K∗ that contains y. Since M1/5(y) ∩M1/5(x) 6= ∅, by Lemma 2.11, we have M1/5(y) ⊆M4/5(x).
Thus vol(M1/5(x)) ≥ 2−O(n) ·vol(M1/5(y)). Also, by Lemma 2.17, we have vol(M1/5(y)) ≥ 2−O(n) ·vol(D).
Thus vol(M1/5(x)) ≥ 2−O(n) · vol(D). To complete the proof, it suffices to show the inequality given in
the statement of the lemma with D in place of M1/5(x). By Lemma 2.14, we have ray(y) ≥ ray(x)/2,
and by Lemma 2.6, we have wid(D) ≥ ray(y). Thus wid(D) ≥ ray(x)/2 = ε/2. Applying Lemma 3.3 on
caps C and D, the desired inequality now follows.

4 Covers of Convex Bodies

As mentioned earlier, we employ a Macbeath region-based adaptation of (c, ε)-coverings in our solution
to approximate CVP. Since our construction will involve composing coverings of various regions of K,
we define our coverings in the following restricted manner. Let K ⊆ Rn be a convex body, let Λ be an
arbitrary subset of int(K), and let c ≥ 2 be any constant. Define a Λ-limited c-covering to be a collection
Q of convex bodies that cover Λ, such that the c-factor expansion of each body about its centroid is
contained within K.

Our coverings will be based on Macbeath regions. Given X ⊆ K, define M λ
K(X) = {Mλ

K(x) : x ∈ X}.
Define a (K,Λ, c)-MNet to be any maximal set of points X ⊆ Λ such that the shrunken Macbeath

regions M
1/4c
K (X) are pairwise disjoint. Through basic properties of Macbeath regions, we can obtain a

covering by suitable expansion as shown in the following lemma, which summarizes the properties of
MNets.

Lemma 4.1. Given a convex body K ⊆ Rn, Λ ⊂ int(K), and c ≥ 2, a (K,Λ, c)-MNet X satisfies the
following properties:

(a) (Packing) The elements of M
1/4c
K (X) are pairwise disjoint.

(b) (Covering) The union of M
1/c
K (X) covers Λ.

(c) (Buffering) The union of MK(X) is contained within K.

Proof. Part (a) is an immediate consequences of the definition. Part (c) follows by basic properties of
Macbeath regions. To prove part (b), let λ = 1/c and consider any point y ∈ Λ. By maximality, there is
x ∈ X such that Mλ/4(x) overlaps Mλ/4(y). By Lemma 2.11, Mλ/4(y) ⊆ Mλ(x), which implies that
y ∈Mλ(x).

Observe that property (b) implies if X is a (K,Λ, c)-MNet, then M
1/c
K (X) is a Λ-limited c-covering.

Further, recalling that Kε = (1 + ε)K, if X is a (Kε,K, c)-MNet, then M
1/c
K (X) is a (c, ε)-covering of K

(see Figure 15).
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Figure 15: (a) A (c, ε)-covering of K by Macbeath regions. (b) The corresponding maximal set of
disjoint Macbeath regions.

4.1 Instance Optimality In this section we show that an MNet for Kε naturally generates an
instance optimal (2, ε)-covering in the sense that its size cannot exceed that of any (2, ε)-covering of K
by a factor of 2O(n) (Lemma 4.4 and Theorem 4.1). It is worth noting that this fact holds irrespective of
the location of the origin in int(K). In other words, we require no centrality assumptions for this result.

We begin with two lemmas that are straightforward adaptations of lemmas in [53]. The first lemma
shows that one incurs a size penalty of only 2O(n) by restricting to c-coverings to centrally symmetric
convex bodies. The second shows that a constant change in the expansion factor results in a similar
penalty.

Lemma 4.2. Let c ≥ 2 be a constant. Let Q ⊆ Rn be a convex body with its centroid at the origin. There
exists a set of 2O(n) centrally symmetric convex bodies which together cover Q, such that the central
c-expansion of any of these bodies is contained within 2Q.

Proof. Let R = MQ(O) = Q∩−Q, and let R′ = 1
cR and R′′ = 1

2cR. Clearly, all these bodies are centrally

symmetric about the origin. By Lemma 2.2, vol(R) ≥ 2−O(n) vol(Q), and since c is a constant, the
volumes of R′ and R′′ are similarly bounded. Let X ⊂ Q be a maximal discrete set of points such that
the translates X ⊕R′′ = {x+R′′ : x ∈ X} are pairwise disjoint. We will show that the bodies X ⊕R′
satisfy the lemma.

To establish the expansion property, observe that for all x ∈ X, x+ cR′ = x+R ⊆ Q⊕R ⊆ 2Q. To
prove the size bound, by disjointness we have

|X| · vol(R′′) ≤ vol(2Q) ≤ 2O(n) vol(Q) ≤ 2O(n) vol(R′′),

and therefore |X| = 2O(n). Finally, to prove coverage, consider any y ∈ Q. By maximality there exists
x ∈ X such that x+R′′ overlaps y +R′′. Since c ≥ 2, it follows that y ∈ x+ 2R′′ = x+R′.

Lemma 4.3. Let K ⊆ Rn be a convex body, let Λ ⊂ int(K), and let c ≥ 2 be a constant. Let Q be a
Λ-limited c-covering with respect to K. For any constant c′ ≥ 2, there exists a Λ-limited c′-covering with
respect to K consisting of centrally symmetric convex bodies whose size is at most 2O(n)|Q|.

Proof. By Lemma 4.2, we can replace each body Q ∈ Q by a set of 2O(n) centrally symmetric convex
bodies which together cover Q and such that the c′-expansion of any of these bodies is contained within
the 2-expansion of Q (about its centroid). It is easy to see that the resulting set of bodies is a Λ-limited
c′-cover with respect to K with the desired size.



We are now ready to show that a (K,Λ, c)-MNet can be used to generate an instance-optimal limited
covering.

Lemma 4.4. Let K ⊆ Rn be a convex body, let Λ ⊂ int(K), and let c ≥ 2 be a constant. Let X be a

(K,Λ, c)-MNet, and let M = M
1/c
K (X) be the associated Λ-limited c-covering with respect to K. Given

any Λ-limited c-covering Q with respect to K, |M | ≤ 2O(n)|Q|.

Proof. By Lemma 4.3, there exists a Λ-limited 5-covering with respect to K consisting of at most
2O(n)|Q| centrally symmetric convex bodies. Let Q′ denote this covering, and let Y denote the set of
centers of these bodies. Consider any Q ∈ Q′, and let y denote its center. By definition, M(y) = MK(y)
is the largest centrally symmetric body centered at y that is contained within K. Since Q is a centrally
symmetric convex body whose 5-expansion about y is contained within K, it follows that Q ⊆M1/5(y).
Therefore, M 1/5(Y ) is a Λ-limited 5-covering of the same cardinality as Q′.

By the packing property of Lemma 4.1, the Macbeath regions M 1/4c(X) are pairwise disjoint. To
relate these two coverings, assign each x ∈ X to any y ∈ Y such that x ∈M1/5(y). We will show that at
most 2O(n) elements of X are assigned to any y ∈ Y . Assuming this for now, we have

|M | = |X| ≤ 2O(n)|Y | = 2O(n)|Q′| ≤ 2O(n)|Q|,

thus completing the proof.
To prove the assertion, consider any x ∈ X assigned to some y ∈ Y . Since M1/5(x) ∩M1/5(y) 6= ∅,

by Lemma 2.11 and the fact that c ≥ 2, we have

M1/4c(x) ⊆ M1/5(x) ⊆ M4/5(y).

Lemma 2.11 also implies that M1/5(y) ⊆M4/5(x), and so vol(M1/4c(x)) ≥ 2−O(n) vol(M4/5(y)). Since
the Macbeath regions of M1/4c(X) are pairwise disjoint, by a simple packing argument, the number of
points of X assigned to any y ∈ Y is at most 2O(n), as desired.

Recall that a K-limited c-covering with respect to Kε = (1 + ε)K is a (c, ε)-covering for K. Applying
the above lemma in this case, we obtain the main result of this section.

Theorem 4.1. Let 0 < ε ≤ 1, let K ⊆ Rn be a convex body such that O ∈ int(K), and let c ≥ 2 be

a constant. Let X be a (Kε,K, c)-MNet, and let M = M
1/c
Kε

(X) be the associated (c, ε)-covering with

respect to K. Given any (c, ε)-covering Q with respect to K, |M | ≤ 2O(n)|Q|.

4.2 Worst-Case Optimality Our main result in this section, given in Lemma 4.6, establishes the
existence of a (c, ε)-covering of size 2O(n)/ε(n−1)/2. This directly implies Theorem 1.1. Before presenting
this result, it will be useful to first establish a bound on the maximum number of disjoint Macbeath
regions associated with Θ(ε)-width caps. The proof is based on the relationship between caps in K and
K∗.

Let K ⊆ Rn be a well-centered convex body. Given 0 < ε ≤ 1
16 , let Λ ⊆ K denote the centroids

of the bases of all caps whose relative widths are between ε and 2ε. Given a constant c ≥ 2, let

X be a (K,Λ, c)-MNet, and let M (X) = M
1/c
K (X) be the associated covering. We will show that

|X| ≤ 2O(n)/ε(n−1)/2, which will imply a similar bound on the size of the associated Λ-limited c-covering.
Recall that for any region Λ ⊆ K, its relative volume is volK(Λ) = vol(Λ)/ vol(K). Let t = ε(n+1)/2.

Define X≥t = {x ∈ X : volK(M
1/c
K (x)) ≥ t} to be the centers of the “large” Macbeath regions in the

covering of relative volume at least t, and let X<t = X \X≥t denote the centers of the remaining “small”
Macbeath regions.



To bound the number of small Macbeath regions, we will make use of the polar body K∗. Let Λ′

denote the boundary of (1 − ε
32)K∗. Let Y be a (K∗,Λ′, 5)-MNet, and let M (Y ) = M

1/5
K∗ (Y ) be the

associated covering. Let t′ = 2−O(n)ε(n+1)/2, where the constant hidden in O(n) is sufficiently large, and

analogously define Y≥t′ = {y ∈ Y : volK∗(M
1/5
K∗ (y)) ≥ t′} to be the set of centers of the “large” Macbeath

regions in the polar covering M (Y ) whose relative volume is at least t′.
To relate these two sets of Macbeath regions, for each y ∈ Y≥t′ , we recall its representative cap in K

as described in Lemma 2.18. The following lemma summarizes the essential properties of the resulting
Macbeath regions.

Lemma 4.5. Given a well-centered convex body K ⊆ Rn, 0 < ε ≤ 1
16 , constant c ≥ 2, and the entities Λ,

Λ′, X, Y , t, and t′ defined above, the following hold:

(a) The regions M
1/c
K (X) are contained in ΛK(ε) = K \ (1− 4ε)K, and volK(ΛK(ε)) = O(nε).

(b) For any x ∈ X≥t, volK(M1/c(x)) ≥ ε(n+1)/2, and |X≥t| ≤ 2O(n)/ε(n−1)/2.

(c) The regions M
1/5
K∗ (Y ) are contained in ΛK∗(ε) = K∗ \ (1− ε

16)K∗, and volK∗(ΛK∗(ε)) = O(nε).

(d) For any y ∈ Y≥t, volK∗(M
1/5(y)) ≥ 2−O(n)ε(n+1)/2, and |Y≥t′ | ≤ 2O(n)/ε(n−1)/2.

(e) For any x ∈ X<t, there is y ∈ Y≥t′ such that M1/c(x) ⊆ E16, and vol(M1/c(x)) ≥ 2−O(n) vol(E16),
where E ⊆ K is the representative cap associated with y.

(f) |X| ≤ 2O(n)/ε(n−1)/2.

Proof. To prove (a), let x be any point of X and let Mx = M1/c(x) be the associated covering Macbeath
region. Because X is a (K,Λ, c)-MNet, Mx is centered at the centroid of the base of a cap Cx of width
between ε and 2ε. Since c ≥ 1, by Lemma 2.13, Mx ⊆ C2

x. As C2
x has width at most 4ε, it follows that

C2
x ⊆ ΛK(ε), and so too is Mx. Clearly, volK(ΛK(ε)) = 1− (1− 4ε)n = O(nε).

To prove (b), observe that the Macbeath regions M 1/4c(X≥t) are pairwise disjoint, and each
has relative volume at least t/4n ≥ 2−O(n)ε(n+1)/2. By a simple packing argument, |X≥t| ≤
volK(ΛK(ε))/(t/4n) ≤ 2O(n)/ε(n−1)/2.

To prove (c), let y be any point of Y and let My = M1/5(y) be the associated covering Macbeath
region. Since y lies on the boundary of Λ′ = K∗(1− ε

32), y lies on the base of a cap Cy of K∗ induced by
the supporting hyperplane of K∗(1− ε

32). By Lemma 2.12, My ⊆ C2
y . Since C2

y has width ε
16 , it follows

that C2
y ⊆ ΛK∗(ε), and so too is My. Also, volK(ΛK∗(ε)) = 1− (1− ε

16)n = O(nε).

To prove (d), observe that by Lemma 4.1, the Macbeath regions M 1/(4·5)(Y≥t) are pairwise
disjoint, and each has relative volume at least t′/4n = 2−O(n)ε(n+1)/2. By a simple packing argument,
|Y≥t| ≤ volK∗(ΛK∗(ε))/(t

′/4n) ≤ 2O(n)/ε(n−1)/2.
To prove (e), let x be any point of X<t and let Mx = M1/4c(x) be the associated packing Macbeath

region. As in (a), Mx is centered at the centroid of the base of a cap Cx of width between ε and 2ε.
Since c is a constant, by Lemma 2.17, vol(Cx) ≤ 2O(n) vol(Mx). Since volK(Mx) ≤ t/4n ≤ ε(n+1)/2, we
have volK(Cx) ≤ 2O(n) volK(Mx) ≤ 2O(n)ε(n+1)/2. Let h denote the hyperplane on which base(Cx) lies.

In the polar, consider the ray r shot from the origin through the point h∗, which lies outside of K∗.
This ray will intersect some covering Macbeath region My = M1/5(y), for some y ∈ Y . We will show
that My satisfies all the properties given in part (e). As K is well-centered, we can apply the Mahler-like
volume relation from Lemma 3.4 to obtain volK(Cx) · volK∗(My) ≥ 2−O(n)εn+1. Using the upper bound
on volK(Cx) shown above, it follows that volK∗(My) ≥ 2−O(n)ε(n+1)/2. Thus, y ∈ Y≥t′ .



It is easy to verify that the preconditions of Lemma 2.18 are satisfied where h∗ plays the role of x, My

plays the role of M1/5(y), and Cx plays the role of C. It follows that the caps Cx and Ey are 8-similar,
that is, Cx ⊆ E8

y and Ey ⊆ C8
x. By Lemma 2.12, Mx ⊆ C2

x, and so Mx ⊆ E16
y . Also, since Ey ⊆ C8

x,

it follows from Lemma 2.9 that vol(Cx) ≥ 2−O(n) vol(Ey). By Lemma 2.17, vol(Mx) ≥ 2−O(n) vol(Cx).
Thus vol(Mx) ≥ 2−O(n) vol(Ey) ≥ 2−O(n) vol(E16

y ), which establishes (e).

Finally, to prove (f), observe that in light of (b), it suffices to show that |X<t| ≤ 2O(n)/ε(n−1)/2.
This quantity can be bounded by the following charging argument. For each y ∈ Y≥t′ , we say that it
charges all the points x ∈ X whose Macbeath region M1/4c(x) is contained in E16

y and whose volume is

at least 2−O(n) vol(E16
y ), where the constant hidden in O(n) is sufficiently large. Note that any point

of Y≥t′ charges at most 2O(n) points of X. By part (e), it follows that every x ∈ X<t is charged by
some y ∈ Y≥t′ . Since |Y≥t′ | ≤ 2O(n)/ε(n−1)/2 and each point of Y≥t′ charges at most 2O(n) points of X, it
follows that |X<t| ≤ 2O(n)/ε(n−1)/2, which completes the proof.

We are now ready to present the main result of this section. Recall that K ⊆ Rn is a well-centered
convex body. Given 0 < ε ≤ 1

16 , define a layered decomposition of K as follows. Recalling that
Kε = (1 + ε)K, for each x ∈ K, define its width, denoted wid(x), to be the width of the associated
minimum volume cap of Kε. Since rayKε

(x) ≥ ε/(1 + ε) ≥ ε/2, it follows from Lemma 2.6 that

wid(x) ≥ ε/2. Let β be a sufficiently small constant, and let k0 =
⌈
log β

ε

⌉
. For 0 ≤ i ≤ k0, define the

layer i be the set of points x ∈ K such that wid(x) ∈ [2i−1, 2i)ε. Define layer k0 + 1 to be the set of
remaining points of K, which have width at least β. Note that the number of layers is O(log 1

ε ).

Lemma 4.6. Let 0 < ε ≤ 1
16 , let K ⊆ Rn be a well-centered convex body, and let c ≥ 2 be a constant.

Let X be a (Kε,K, c)-MNet, and let M = M
1/c
Kε

(X). Then M is a (c, ε)-covering for K consisting of at

most 2O(n)/ε(n−1)/2 centrally symmetric convex bodies.

Proof. By Lemma 4.1, M is a (c, ε)-covering for K. We will bound the size of the covering by partitioning
the points of X based on the layered decomposition (defined above) and then use Lemma 4.5 to bound
the number of points in each layer.

For 0 ≤ i ≤ k0, let Xi be subset of points of X that are in layer i. Since K is well-centered, Kε is
also well-centered. By Lemma 4.5(f), |Xi| ≤ 2O(n)/(2iε)(n−1)/2. Summing |Xi| over all layers 0 to k0 we
have at most 2O(n)/ε(n−1)/2 points in all these layers.

It remains only to bound |Xk0+1|. Consider the set M
1/4c
Kε

(Xk0+1) of the associated packing Macbeath
regions. By Lemma 4.1, these Macbeath regions are pairwise disjoint. Recall that the minimum volume
cap of any point in Xk0+1 has width at least β (used in the definition of k0). Hence by Lemma 2.16 (and
the fact that c is a constant), each of these Macbeath regions has relative volume of at least 2−O(n). By
a simple packing argument, it follows that |Xk0+1| ≤ 2O(n), which completes the proof.

5 Applications: Banach-Mazur Approximation

In this section we show that the convex hull of the centers of any (c, ε)-covering implies the existence of
an approximating polytope in the Banach-Mazur distance. The main result is given in the following
lemma. Combining this with our covering from Theorem 1.1 establishes Theorem 1.2.

Lemma 5.1. Let 0 < ε < 1, let K ⊆ Rn be a well-centered convex body, and let c ≥ 2 be a constant.
Let X be the set of centers of any (c, ε′)-covering of K(1 + ε/c), where ε′ = 1+ε

1+ε/c − 1. Then

K ⊂ conv(X) ⊂ K(1 + ε).



Proof. By definition, the bodies of M together cover K(1 + ε/c) and the c-expansion of any such body
about its center is contained within K(1 + ε). Since each body of M is contained within K(1 + ε), it
follows that X ⊂ K(1 + ε) and so conv(X) ⊂ K(1 + ε). To prove that K ⊂ conv(X), it suffices to show
that there is a point of X in every cap of K(1 + ε) defined by a supporting hyperplane of K.

O

K K(1 + ε/c) K(1 + ε)
HC

z Hz

x

B y p

Figure 16: Proof of Lemma 5.1.

Let C be a cap of K(1 + ε) defined by a supporting hyperplane H of K. Let x be a point at which
H touches K. For the sake of concreteness, assume that H is horizontal and K lies below H. Consider
the ray emanating from the origin passing through x. Suppose that this ray intersects the boundary
of K(1 + ε/c) at y and the boundary of K(1 + ε) at z. Let Hz denote the supporting hyperplane of
K(1 + ε) at z. Clearly Hz is parallel to H and the distance between H and Hz is c times the distance
between y and H.

Consider any body B of M that contains point y. We claim that the center p of the body B is
contained within C. By our earlier remarks, p ∈ K(1 + ε). Thus, we only need to show that p cannot lie
below H. To see this, recall that the body formed by expanding B about its center p by a factor of c is
contained within K(1 + ε). In particular, the point p+ c(y − p) ∈ K(1 + ε). However, if p lies below H,
then the point p+ c(y − p) would lie above Hz, and hence outside K(1 + ε). It follows that p cannot lie
below H, which completes the proof.

By Lemma 4.6, there exists a (c, ε′)-covering M for K(1 +ε/c) consisting of at most 2O(n)/(ε′)(n−1)/2

centrally symmetric convex bodies. The bound on vertices in Theorem 1.2 now follows immediately from
the above lemma (setting P = conv(X) and noting that ε′ = Θ(ε)), and the bound on facets follows via
polarity and scaling by a factor of (1 + ε).

6 Applications: Approximate CVP and IP

6.1 Preliminaries Given reals 0 < r ≤ r′ and x ∈ Rn, we say that a convex body K ⊆ Rn is
(x, r, r′)-centered if x+ rBn

2 ⊆ K ⊆ x+ r′Bn
2 , where Bn

2 is the unit Euclidean ball centered at the origin.
We employ a standard computational model in our (1 + ε)-CVP algorithm. We assume that the basis

vectors of the lattice L are presented as an n× n matrix over the rationals. We assume that the convex
body K inducing the norm is (O, r, r′)-centered, where both r and r′ are given explicitly as inputs. Input
size is measured as the total number of bits used to encode r, r′, t, and ε and the basis vectors of L (all
rationals).

Following standard conventions, we assume that access to K is provided through a membership
oracle, which on input x ∈ Rn returns 1 if x ∈ K and 0 otherwise. Our algorithms apply more generally
where K is presented using a weak membership oracle, which takes an extra parameter δ > 0 and only
needs to return the correct answer when x is at Euclidean distance at least δ from the boundary of K.



In the oracle model of computation, the running time is measured by the number of oracle calls and
bit complexity of arithmetic operations. Note that the running time of our (1 + ε)-CVP algorithm will
be exponential in the dimension n. We will follow standard practice and suppress polynomial factors in
n and the input size. We will also simplify the presentation by expressing our algorithms assuming exact
oracles, but the adaptation to weak oracles is straightforward.

Our approach to approximate CVP follows one introduced by Eisenbrand et al. [32] for `∞ and later
extended in a number of works [33, 53, 58], which employs coverings of K. Given any constant c ≥ 2, a
(c, ε)-covering of an (O, r, r′)-centered convex body K is a collection Q of convex bodies, such that a
factor-c expansion of each Q ∈ Q about its centroid lies within Kε. Naszódi and Venzin showed that
a (2, ε)-covering of K can be used to boost the approximation factor of any 2-CVP solver for general
norms.

Lemma 6.1. (Naszódi and Venzin [53]) Let L be a lattice and let K be an (O, r, r′)-centered convex
body. Given a (2, ε)-covering of K consisting of N centrally symmetric convex bodies, we can solve
(1 + 7ε)-CVP under ‖ · ‖K with Õ(N) calls to a 2-CVP solver for norms.

6.2 CVP Algorithm As in Lemma 4.6, let K ⊆ Rn be a well-centered convex body with the origin
in its interior. In this section, we present our algorithm for computing a (1 + ε)-approximation to the
closest vector (CVP) under the norm defined by K.

Given a convex body K ⊆ Rn, 0 < ε ≤ 1, and a constant c ≥ 2, a (c, ε)-enumerator is a procedure
that outputs the elements of a (c, ε)-covering for K. Each of the elements of the covering is represented
as an oracle for an (a, r, r′)-centered convex body, where a, r, and r′ are given explicitly in the output
(as rationals). Our enumerator will be randomized in the Monte Carlo sense, meaning that it achieves a
stated running time, but the output may fail to be a (c, ε)-covering with some given probability. Define
an enumerator’s overhead to be its total running time divided by the number of elements output, and its
space complexity to be the amount of memory it needs.

Our enumerator is based on constructing hitting sets for coverings associated with certain MNets.
The following lemma will be useful.

Lemma 6.2. Let 0 < ε ≤ 1
16 and c ≥ 2 be a constant. Let K ⊆ Rn and Λ ⊆ K. Let X be a (K,Λ, 4c)-

MNet and let M = M
1/4c
K (X) be the associated covering. Let Y be any hitting set for M in the sense

that for each M ∈M , Y ∩M 6= ∅. Then M
1/c
K (Y ) is a Λ-limited c-covering with respect to K.

Proof. Since c > 1, the c-expansion of any Macbeath region of M1/c(Y ) is contained within K. To
prove the covering property, let z be any point of Λ. By Lemma 4.1, there is a point x ∈ X such that
z ∈M1/4c(x). Let y be a point of Y that is contained in M1/4c(x). Since M1/4c(x) ∩M1/4c(y) 6= ∅, by
Lemma 2.11, M1/4c(x) ⊆M1/c(y). Thus z ∈M1/c(y). It follows that M1/c(Y ) is a Λ-limited c-covering
with respect to K.

The following lemma shows that membership oracles for K can be extended to its polar as well as
Macbeath regions and caps that are ε-deep.

Lemma 6.3. Given an (O, r, r′)-centered convex body K, specified by a weak membership oracle, in time
polynomial in n, log 1

ε , and log r′

r we can do the following:

(i) Construct a weak membership oracle for K∗.

(ii) Given a point x ∈ K such that ray(x) ≥ ε, construct a weak membership oracle for Mλ
K(x) for any

λ > 0.



(iii) Given a hyperplane h intersecting K which induces a cap C of width at least ε, construct a weak
membership oracle for C.

Proof. To prove (i), Grötschel, Lovász, and Schrijver [36] proved that a weak violation oracle can be
constructed from a weak membership oracle, and a weak violation oracle for K yields a weak membership
oracle for K∗. (See [36] for details.) Note that K∗ is

(
O, 1

r′ ,
1
r

)
-centered. To prove (ii), note that we

can construct a membership oracle for M(x) by using the fact that a point y ∈ M(x) if and only if
y ∈ K and 2x− y ∈ K. If ray(x) ≥ ε, it is straightforward to show that M(x) is (x,Ω(εr), r′)-centered.
The generalization of this construction to Mλ

K(x) for any λ > 0 is immediate. Finally, to prove (iii),
observe that the membership oracle is easy, but centering is the issue. We first determine the apex a of
C (approximately) by finding the supporting hyperplane of K that is parallel to h. We let b denote the
point midway on the segment Oa between base of the cap and a. It is easy to show that a Euclidean
ball of radius Ω(εr) can be centered at b, which is contained within C. Thus C is (b,Ω(εr), 2r′)-centered.

We will make use of standard sampling results (see, e.g., [30, 62]), which state that given η > 0,
there exists an algorithm that outputs an η-uniform X ∈ K using at most poly

(
n, ln 1

η , ln
r′

r

)
calls to a

membership oracle for K and arithmetic operations. (A random point X ∈ K is η-uniform if the total
variation distance between the sample X and uniform vector in K is at most η.) As with membership
oracles, it will simplify the presentation to state our constructions in terms of a true uniform sampler,
but the generalization is straightforward.

Lemma 6.4. Given 0 < ε ≤ 1, constant c ≥ 2, and an oracle for a convex body K ⊆ Rn which is both
well-centered and (O, r, r′)-centered, there exists a randomized (c, ε)-enumerator for K, which generates
a covering of size

2O(n) · 1

ε(n−1)/2
· log2 1

ε
,

such that the cover elements are (a,O(εr), r′)-centered. The enumerator succeeds with probability
1− 2−O(n), and its overhead and space complexity are both polynomial in n, log r′

r and log 1
ε .

In our construction, the elements of the covering will be centrally symmetric, and more specifically,

the covering element centered at a point a ∈ K will be a Macbeath region of the form M
1/c′

Kε
(a), where

c′ = O(c).

Proof. Recall the layered decomposition of K described just before Lemma 4.6. For 0 ≤ i ≤ k0, layer i
consists of points x ∈ K such that wid(x) ∈ [2i−1, 2i)ε, and layer k0 + 1 consists of the remaining points
x ∈ K. Note that for points in layer k0 + 1, wid(x) ≥ β. Here β is a constant and the number of layers
k0 + 2 = O(log 1

ε ). Let Λi denote the points in layer i. Our enumerator runs in phases, where the i-th
phase generates elements of a Λi-limited c-covering with respect to Kε. Clearly, the elements generated
in all the phases together constitute a (c, ε)-covering for K.

For 0 ≤ i ≤ k0, to describe phase i of the enumerator, it will simplify notation to write K,Λ, ε, and c
for Kε,Λi, 2

i−1ε, and 4c, respectively. Our (new) objective is to generate a Λ-limited (c/4)-covering in

this phase. Let X be a (K,Λ, c)-MNet, let M = M
1/c
K (X) be the associated covering, and let X ′ be a

hitting set for M . By Lemma 6.2, M
4/c
K (X ′) is a Λ-limited (c/4)-covering.

We show how to generate the hitting set X ′ for M along with the elements of M
4/c
K (X ′) in the

desired form. In addition to the quantities K,Λ, ε, c,X defined above, define also the quantities Λ′, Y, t, t′,
as in Lemma 4.5. By Lemma 4.5(a), the regions of M are contained in ΛK(ε) = K \ (1− 4ε)K. Recall



the distinction between “large” and “small” Macbeath regions of M , based on whether its relative
volume is at least t. We will use a different strategy for hitting these two kinds of regions.

First, let us consider the large Macbeath regions. We claim that it suffices to choose (2O(n)/ε(n−1)/2) ·
log 1

ε points uniformly in ΛK(ε) to hit all the large Macbeath regions with high probability. Before
proving this, note that we can sample ΛK(ε) uniformly by first choosing a point p from the uniform
distribution in K and then choosing a point uniformly from the portion of the ray Op ∩ ΛK(ε). Using
binary search, we can find such a point with constant probability in O(log r′

r + log 1
ε ) steps. We omit the

straightforward details.
To prove the claim, let M be a large Macbeath region. By Lemma 4.5(a) and (b), M ⊆ ΛK(ε),

volK(M) ≥ ε(n+1)/2, and volK(ΛK(ε)) = O(nε). Thus vol(M)/ vol(ΛK(ε)) ≥ 2−O(n)ε(n−1)/2. Also, by
Lemma 4.5(b), the number of large Macbeath regions is at most 2O(n)/ε(n−1)/2. A standard calculation
implies that the probability of failing to hit some large Macbeath region in a layer is no more than εO(n).

Next we show how to generate a hitting set for the small Macbeath regions. Intuitively, as these are
small, they cannot be stabbed efficiently by uniform sampling in ΛK(ε). Instead, we will hit them by
exploiting the relationship between the small Macbeath regions of M and the large Macbeath regions of

M ′ = M
1/5
K∗ (Y ). Recall that Y is a (K∗,Λ′, 5)-MNet, where Λ′ is the boundary of (1− ε

32)K∗, and the

large Macbeath regions of M ′ have volume at least t′ = 2−O(n)ε(n+1)/2. Our high-level idea for hitting
the small Macbeath regions of M is to hit the large Macbeath regions of M ′ and then uniformly sample
the associated representative cap of K.

More precisely, we perform (2O(n)/ε(n−1)/2) · log2(1/ε) iterations of the following procedure. First,
we choose a point p uniformly in ΛK∗(ε) = K∗ \ (1 − ε

32)K∗. (Note that uniformly sampling ΛK∗(ε)
is analogous to uniformly sampling ΛK(ε), which we described above, so we skip details.) Next, we
sample uniformly in the cap E16, where E is the representative cap associated with p. We claim that
this procedure stabs all the small Macbeath regions of M with high probability.

To see why, recall from Lemma 4.5(e) that for any small Macbeath region M ∈M , there is a large
Macbeath region M ′ ∈ M ′ with the following property. Let E be the representative cap associated
with any point y ∈ M ′. Then M ⊆ E16 and vol(M) ≥ 2−O(n) vol(E16). By properties (c) and (d) of
Lemma 4.5, we have M ′ ⊆ ΛK∗(ε), volK∗(M

′) ≥ 2−O(n)ε(n+1)/2, and volK∗(ΛK∗(ε)) = O(nε). Also,
by Lemma 4.5(d), the number of large Macbeath regions of M ′ is at most 2O(n)/ε(n−1)/2. A standard
calculation implies that we will hit every large Macbeath region at least 2O(n) log 1

ε times with failure

probability no more than εO(n). Note that each time we hit M ′, we have a chance of hitting M and the
probability of hitting M by uniformly sampling in the associated representative cap in any one trial is at
least 2−O(n). It follows that the probability of failing to hit some small Macbeath region of M is no
more than εO(n).

Putting it together, it follows that we can hit the Macbeath regions in all the layers i, 0 ≤ i ≤ k0

with failure probability bounded by 2−O(n).
Finally, we describe phase k0 + 1 of the enumerator. Recall that Λk0+1 consists of points such

that the associated minimum volume cap has width at least β, where β is a constant. Let X be a

(Kε,Λk0+1, 4c)-MNet and let M = M
1/4c
Kε

(X) be the associated covering. By Lemma 2.16, the Macbeath

regions of M have relative volume at least 2−O(n). Thus, we can hit all the Macbeath regions of M
with 2O(n) uniformly sampled points in K with failure probability no more that 2−O(n).

In closing, we mention that Lemma 6.3 shows that the enumerator can construct the three membership
oracles it needs for its operation. Specifically, for each point in the hitting set, by part (b), we can
construct an oracle for the associated Macbeath region. By part (a), we can construct an oracle for K∗,
which we need to sample uniformly in K∗, and by part (c), we can construct oracles for the caps of K
which need to be sampled uniformly. This completes the proof.



Following Eisenbrand et al [32] and Naszódi and Venzin [53], we solve the (1 + ε)-CVP in the norm
‖ · ‖K by reducing it to the (1 + ε)-gap CVP problem in this norm. In the (1 + ε)-gap CVP problem,
given a target t and a number γ > 0, we have to either find a lattice vector whose distance to t is at most
γ or assert that all lattice vectors have distance more than γ/(1 + ε). We solve the (1 + ε)-CVP problem
via binary search on the distance from the target. The number of different distance values that need
to be tested is O(log 1

ε + log n+ log r′

r ), and for each distance, we need to solve the (1 + ε)-gap CVP
problem. In turn, the (1 + ε)-gap CVP problem is solved by invoking the (c, ε)-enumerator. For each of
the N bodies generated by the enumerator, we need to call a 2-gap CVP solver. For this purpose, we
use Dadush and Kun’s deterministic algorithm [25] as the 2-gap CVP solver. As this 2-gap CVP solver
always yields the correct answer, the only source of error in our algorithm arises from the fact that a
valid covering may not be generated. The failure rate of our (c, ε)-enumerator is 2−O(n), which we reduce
further by running it log log 1

ε + log log n+ log log r′

r times. This ensures that all the coverings generated

over the course of solving the (1 + ε)-CVP problem are correct with probability at least 1 − 2−O(n).
Recalling that the algorithm by Dadush and Kun takes 2O(n) time and O(2n) space, we have established
Theorem 1.3 (neglecting polynomial factors in the input size).

6.3 Approximate Integer Programming Through a reduction by Dadush, our CVP result also
implies a new algorithm for approximate integer programming (IP). We are given a convex body K ⊆ Rn
and an n-dimensional lattice L ⊂ Rn, and we are to determine either that K ∩ L = ∅ or return a point
y ∈ K ∩ L. The best algorithm known for this problem takes nO(n) time [42], which has sparked interest
in the approximate version. In approximate integer programming, the algorithm must return a lattice
point in (1 + ε)K (where the (1 + ε)-expansion of K is about the centroid), or assert that there are no
lattice points in K.

Dadush [24] has shown that approximate IP can be reduced to (1 + ε)-CVP problem under a
well-centered norm. His method is to first find an approximate centroid p and then make one call to a
(1 + ε)-CVP solver for the norm induced by K − p. By plugging in our solver, we obtain an immediate
improvement with respect to the ε-dependencies (neglecting polynomial factors in the input size).

Theorem 6.1. There exists a 2O(n)/ε(n−1)/2-time and 2n-space randomized algorithm which solves the
approximate integer programming problem with probability at least 1− 2−n .
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[19] J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors and successive
minima. Theo. Comp. Sci. 410 (2009), pp. 1648–1665. doi: 10.1016/j.tcs.2008.12.045.
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