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Abstract
The computation of (i) ε-kernels, (ii) approximate diameter, and (iii) approximate bichromatic
closest pair are fundamental problems in geometric approximation. In this paper, we describe
new algorithms that offer significant improvements to their running times. In each case the input
is a set of n points in Rd for a constant dimension d ≥ 3 and an approximation parameter ε > 0.
We reduce the respective running times
(i) from O((n+ 1/εd−2) log 1

ε ) to O(n log 1
ε + 1/ε(d−1)/2+α),

(ii) from O((n+ 1/εd−2) log 1
ε ) to O(n log 1

ε + 1/ε(d−1)/2+α), and
(iii) from O(n/εd/3) to O(n/εd/4+α),
for an arbitrarily small constant α > 0. Result (i) is nearly optimal since the size of the output
ε-kernel is Θ(1/ε(d−1)/2) in the worst case.

These results are all based on an efficient decomposition of a convex body using a hierarchy of
Macbeath regions and contrast with previous solutions, which decompose space using quadtrees
and grids. By further application of these techniques, we also show that it is possible to obtain
near-optimal preprocessing times for the most efficient data structures to approximately answer
queries for (iv) nearest-neighbor searching, (v) directional width, and (vi) polytope membership.
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1 Introduction

In this paper we present new faster algorithms to several fundamental geometric approx-
imation problems involving point sets in d-dimensional space. In particular, we present
approximation algorithms for ε-kernels, diameter, bichromatic closest pair, and the minimum
bottleneck spanning tree. Our results arise from a recently developed shape-sensitive ap-
proach to approximating convex bodies, which is based on the classical concept of Macbeath
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10:2 Near-Optimal ε-Kernel Construction and Related Problems

regions. This approach has been applied to computing area-sensitive bounds for polytope
approximation [5], polytope approximations with low combinatorial complexity [6], answering
approximate polytope-membership queries [7], and approximate nearest-neighbor search-
ing [7]. The results of [7] demonstrate the existence of data structures for these query
problems but did not discuss preprocessing in detail. We complete the story by present-
ing efficient algorithms for building data structures for three related queries: approximate
polytope membership, approximate directional width, and approximate nearest-neighbors.

Throughout, we assume that the dimension d is a constant. Our running times will often
involve expressions of the form 1/εα. In such cases, α > 0 is constant that can be made
arbitrarily small. The approximation parameter ε is treated as an asymptotic variable that
approaches 0. We assume throughout that ε < 1, which guarantees that log 1

ε > 0.
In Section 1.1, we present our results for ε-kernels, diameter, bichromatic closest pair,

and minimum bottleneck tree. In Section 1.2, we present our results for the data structure
problems. In Section 1.3, we give an overview of the techniques used.

Concurrently and independently, Timothy Chan has reported complexity bounds that
are very similar to our results [18]. Remarkably, the computational techniques seem to be
very different, based on Chebyshev polynomials.

1.1 Static Results
Kernel. Given a set S of n points in Rd and an approximation parameter ε > 0, an ε-coreset
is an (ideally small) subset of S that approximates some measure over S (see [2] for a survey).
Given a nonzero vector v ∈ Rd, the directional width of S in direction v, widthv(S) is the
minimum distance between two hyperplanes that enclose S and are orthogonal to v. A
coreset for the directional width (also known as an ε-kernel and as a coreset for the extent
measure) is a subset Q ⊆ S such that widthv(Q) ≥ (1− ε) widthv(S), for all v ∈ Rd. Kernels
are among the most fundamental constructions in geometric approximation, playing a role
similar to that of convex hulls in exact computations. Kernels have been used to obtain
approximation algorithms to several problems such as diameter, minimum width, convex
hull volume, minimum enclosing cylinder, minimum enclosing annulus, and minimum-width
cylindrical shell [1, 2].

The concept of ε-kernels was introduced by Agarwal et al. [1]. The existence of ε-
kernels with O(1/ε(d−1)/2) points is implied in the works of Dudley [19] and Bronshteyn
and Ivanov [16], and this is known to be optimal in the worst case. Agarwal et al. [1]
demonstrated how to compute such a kernel in O(n+ 1/ε3(d−1)/2) time, which reduces to
O(n) when n = Ω(1/ε3(d−1)/2). While less succinct ε-kernels with O(1/εd−1) points can be
constructed in time O(n) time for all n [1, 14], no linear-time algorithm is known to build
an ε-kernel of optimal size. Hereafter, we use the term ε-kernel to refer exclusively to an
ε-kernel of size O(1/ε(d−1)/2).

Chan [17] showed that an ε-kernel can be constructed in O((n + 1/εd−2) log 1
ε ) time,

which is nearly linear when n = Ω(1/εd−2). He posed the open problem of obtaining a faster
algorithm. A decade later, Arya and Chan [11] showed how to build an ε-kernel in roughly
O(n+

√
n/εd/2) time using discrete Voronoi diagrams. In this paper, we attain the following

near-optimal construction time.

I Theorem 1.1. Given a set S of n points in Rd and an approximation parameter ε > 0, it is
possible to construct an ε-kernel of S with O(1/ε(d−1)/2) points in O(n log 1

ε + 1/ε(d−1)/2+α)
time, where α is an arbitrarily small positive constant.

Because the worst-case output size is O(1/ε(d−1)/2), we may assume that n is at least
this large, for otherwise we can simply take S itself to be the kernel. Since 1/εα dominates
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log 1
ε , the above running time can be expressed as O(n/εα), which is nearly linear given that

α can be made arbitrarily small.

Diameter. An important application of ε-kernels is to approximate the diameter of a point
set. Given n data points, the diameter is defined to be the maximum distance between any
two data points. An ε-approximation of the diameter is a pair of points whose distance is
at least (1 − ε) times the exact diameter. There are multiple algorithms to approximate
the diameter [1, 3, 11, 13, 17]. The fastest running times are O((n+ 1/εd−2) log 1

ε ) [17] and
roughly O(n+

√
n/εd/2) [11]. The algorithm from [17] essentially computes an ε-kernel Q

and then determines the maximum value of widthv(Q) among a set of k = O(1/ε(d−1)/2)
directions v by brute force [1]. Discrete Voronoi diagrams [11] permit this computation in
roughly O(n+

√
n/εd/2) time. Therefore, combining the kernel construction of Theorem 1.1

with discrete Voronoi diagrams [11], we reduce n to O(1/ε(d−1)/2) and obtain an algorithm
to ε-approximate the diameter in roughly O(n+ 1/ε3d/4) time. However, we show that it is
possible to obtain a much faster algorithm, as presented in the following theorem.

I Theorem 1.2. Given a set S of n points in Rd and an approximation parameter ε > 0, it
is possible to compute an ε-approximation to the diameter of S in O(n log 1

ε + 1/ε(d−1)/2+α)
time.

Bichromatic Closest Pair. In the bichromatic closest pair (BCP) problem, we are given n
points from two sets, designated red and blue, and we want to find the closest red-blue pair.
In the ε-approximate version, the goal is to find a red-blue pair of points whose distance
is at most (1 + ε) times the exact BCP distance. Approximations to the BCP problem
were introduced in [23], and the most efficient randomized approximation algorithm runs in
roughly O(n/εd/3) expected time [11]. We present the following result.

I Theorem 1.3. Given n red and blue points in Rd and an approximation parameter ε > 0,
there is a randomized algorithm that computes an ε-approximation to the bichromatic closest
pair in O(n/εd/4+α) expected time.

Euclidean Trees. Given a set S of n points in Rd, a Euclidean minimum spanning tree is the
spanning tree with vertex set S that minimizes the sum of the edge lengths, while a Euclidean
minimum bottleneck tree minimizes the maximum edge length. In the approximate version
we respectively approximate the sum and the maximum of the edge lengths. A minimum
spanning tree is a minimum bottleneck tree (although the converse does not hold). However,
an approximation to the minimum spanning tree is not necessarily an approximation to the
minimum bottleneck tree. A recent approximation algorithm to the Euclidean minimum
spanning tree takes roughly O(n logn+n/ε2) time, regardless of the (constant) dimension [9].
On the other hand, the fastest algorithm to approximate the minimum bottleneck tree takes
roughly O((n logn)/εd/3) expected time [11]. The algorithm uses BCP to simultaneously
attain an approximation to the minimum bottleneck and the minimum spanning trees. We
prove the following theorem.

I Theorem 1.4. Given n points in Rd and an approximation parameter ε > 0, there is a
randomized algorithm that computes a tree T that is an ε-approximation to both the Euclidean
minimum bottleneck and the Euclidean minimum spanning trees in O((n logn)/εd/4+α)
expected time.

SoCG 2017
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1.2 Data Structure Results

Polytope membership. Let P denote a convex polytope in Rd, represented as the bounded
intersection of n halfspaces. The polytope membership problem consists of preprocessing P so
that it is possible to determine efficiently whether a given query point q ∈ Rd lies within
P . In the ε-approximate version, we consider an expanded convex body K ⊃ P . A natural
way to define this expansion would be to consider the set of points that lie within distance
ε · diam(P ) of P , thus defining a body whose Hausdorff distance from P is ε · diam(P ).
However, this definition has the shortcoming that it is not sensitive to the directional width
of P . Instead, we define K as follows. For any nonzero vector v ∈ Rd, consider the two
supporting hyperplanes for P that are normal to v. Translate each of these hyperplanes
outward by a distance of ε ·widthv(P ), and consider the closed slab-like region lying between
them. Define K to be the intersection of this (infinite) set of slabs. This is clearly a stronger
approximation than the Hausdorff-based definition. An ε-approximate polytope membership
query (ε-APM query) returns a positive result if the query point q is inside P , a negative
result if q is outside K, and may return either result otherwise.1

We recently proposed an optimal data structure to answer approximate polytope mem-
bership queries, but efficient preprocessing remained an open problem [7]. In this paper, we
present a similar data structure that not only attains optimal storage and query time, but
can also be preprocessed in near-optimal time.

I Theorem 1.5. Given a convex polytope P in Rd represented as the intersection of n
halfspaces and an approximation parameter ε > 0, there is a data structure that can answer
ε-approximate polytope membership queries with query time O(log 1

ε ), space O(1/ε(d−1)/2),
and preprocessing time O(n log 1

ε + 1/ε(d−1)/2+α).

Directional width. Applying the previous data structure in the dual space, we obtain a data
structure for the following ε-approximate directional width problem, which is closely related
to ε-kernels. Given a set S of n points in a constant dimension d and an approximation
parameter ε > 0, the goal is to preprocess S to efficiently ε-approximate widthv(S), for a
nonzero query vector v. We present the following result.

I Theorem 1.6. Given a set S of n points in Rd and an approximation parameter ε > 0,
there is a data structure that can answer ε-approximate directional width queries with query
time O(log2 1

ε ), space O(1/ε(d−1)/2), and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α).

Nearest Neighbor. Let S be a set of n points in Rd. Given any q ∈ Rd, an ε-approximate
nearest neighbor (ANN) of q is any point of S whose distance from q is at most (1 + ε) times
the distance to q’s closest point in S. The objective is to preprocess S in order to answer
such queries efficiently. Data structures for approximate nearest neighbor searching (in fixed
dimensions) have been proposed by several authors, offering space-time tradeoffs (see [7] for
an overview of the tradeoffs). Applying the reduction from approximate nearest neighbor to
approximate polytope membership established in [4] together with Theorem 1.5, we obtain
the following result, which matches the best bound [7] up to an O(log 1

ε ) factor in the query
time, but offers faster preprocessing time.

1 Our earlier works on ε-APM queries [4, 7] use the weaker Hausdorff form to define the problem, but the
solutions presented there actually achieve the stronger direction-sensitive form.
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Figure 1 Two levels of the ellipsoid hierarchy.

I Theorem 1.7. Given a set S of n points in Rd, an approximation parameter ε > 0, and
m such that log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε ), there is a data structure that can answer Euclidean

ε-approximate nearest neighbor queries with query time O(logn+ (log 1
ε )/(m · εd/2)) space

O(nm), and preprocessing time O(n logn log 1
ε + nm/εα).

1.3 Techniques
In contrast to previous kernel constructions, which are based on grids and the execution of
Bronshteyn and Ivanov’s algorithm, our construction employs a classical structure from the
theory of convexity, called Macbeath regions [24]. Macbeath regions, which will be defined
in Section 2.1, have found numerous uses in the theory of convex sets and the geometry of
numbers (see Bárány [12] for an excellent survey). They have also been applied to several
problems in the field of computational geometry. However, most previous results were either
in the form of lower bounds [8, 10, 15] or focused on existential results [5, 6, 20, 25].

In [7] the authors introduced a data structure employing a hierarchy of ellipsoids based
on Macbeath regions to answer approximate polytope membership queries, but the efficient
computation of the hierarchy was not considered. In this paper, we show how to efficiently
construct the Macbeath regions that form the basis of this hierarchy.

Let P denote a convex polytope in Rd. Each level i in the hierarchy corresponds to a δi-
approximation of the boundary of P by a set of O(1/δ(d−1)/2

i ) ellipsoids, where δi = Θ(1/2i).
Each ellipsoid is sandwiched between two Macbeath regions and has O(1) children, which
correspond to the ellipsoids of the following level that approximate the same portion of the
boundary (see Figure 1). The hierarchy starts with δ0 = Θ(1) and stops after O(log 1

δ ) levels
when δi = δ, for a desired approximation δ. We present a simple algorithm to construct
the hierarchy in O(n + 1/δ3(d−1)/2) time. The polytope P can be presented as either the
intersection of n halfspaces or the convex hull of n points. We present the relevant background
in Section 3.

Our algorithm to compute an ε-kernel in time O(n log 1
ε + 1/ε(d−1)/2+α) (Theorem 1.1)

is based on a bootstrapping process. Since the time to build the ε-approximation hierarchy
for the convex hull is prohibitively high, we use an approximation parameter δ = ε1/3 to
build a δ-approximation hierarchy in O(n+ 1/ε(d−1)/2) time. By navigating through this
hierarchy, we partition the n points among the leaf Macbeath ellipsoids in O(n log 1

ε ) time,
discarding points that are too far from the boundary. We then compute an (ε/δ)-kernel for
the set of points in each leaf ellipsoid and return the union of the kernels computed.

Given an algorithm to compute an ε-kernel in O(n log 1
ε + 1/εt(d−1)) time, the previous

procedure produces an ε-kernel in O(n log 1
ε + 1/εt′(d−1)) time, where t′ = (4t + 1)/6. By

bootstrapping the construction a constant number of times, the value of t decreases from 1 to
a value that is arbitrarily close to 1

2 . (This accounts for the O(1/εα) factors in our running
times.) The construction and its analysis are presented in Section 4.

SoCG 2017
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In Section 5, we use our kernel construction in the dual space to efficiently build a polytope
membership data structure, proving Theorem 1.5. The key idea is to compute multiple
kernels in order to avoid examining the whole polytope when building each Macbeath region.
Again, we use bootstrapping to obtain a near-optimal preprocessing time. The remaining
theorems follow from Theorems 1.1 and 1.5, together with several known reductions.

2 Geometric Preliminaries

Consider a convex body K in d-dimensional space Rd. Let ∂K denote the boundary of K. Let
O denote the origin of Rd. Given a parameter 0 < γ ≤ 1, we say that K is γ-fat if there exist
concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ.
We say that K is fat if it is γ-fat for a constant γ (possibly depending on d, but not on ε).

Unless otherwise specified, the notion of ε-approximation between convex bodies will be
based on the direction-sensitive definition given in Section 1.2. We say that a convex body
K ′ is an absolute ε-approximation to another convex body K if they are within Hausdorff
error ε of each other. Further, we say that K ′ is an inner (resp., outer) approximation if
K ′ ⊆ K (resp., K ′ ⊇ K).

Let B0 denote a ball of radius r0 = 1
2 centered at the origin. For 0 < γ ≤ 1, let γB0

denote the concentric ball of radius γr0 = γ
2 . We say that a convex body K is in γ-canonical

form if it is nested between γB0 and B0. A body in γ-canonical form is γ-fat and has
diameter Θ(1). We will refer to point O as the center of P .

For any point x ∈ K, define δ(x) to be minimum distance from x to any point on ∂K.
For the sake of ray-shooting queries, it is useful to define a ray-based notion of distance as
well. Given x ∈ K, define the ray-distance of x to the boundary, denoted ray(x), as follows.
Consider the intersection point p of ∂K and the ray emanating from O that passes through
x. We define ray(x) = ‖xp‖. The following utility lemma will be helpful in relating distances
to the boundary.

I Lemma 2.1. Given a convex body K in γ-canonical form:
(a) For any point x ∈ P , δ(x) ≤ ray(x) ≤ δ(x)/γ.
(b) Let h be a supporting hyperplane of K. Let p be any point inside K at distance at most

some distance w from h, where w ≤ γ/4. Let p′ denote the intersection of the ray Op
and h. Then ‖pp′‖ ≤ 2w/γ.

(c) Let p be any point on the boundary of K, and let h be a supporting hyperplane at p.
Let h′ denote the hyperplane obtained by translating h in the direction of the outward
normal by some distance w. Let p′ denote the intersection of the ray Op with h′. Then
‖pp′‖ ≤ w/γ.

We omit the straightforward proof. The lower bound on ray(x) for part (a) is trivial, and
the upper bound follows by a straightforward adaption of Lemma 4.2 of [6]. Part (b) is an
adaptation of Lemma 2.11 of [7], and part (c) is similar.

2.1 Caps and Macbeath Regions
Much of the material in this section has been presented in [6, 7]. We include it here for
the sake of completeness. Given a convex body K, a cap C is defined to be the nonempty
intersection of K with a halfspace (see Figure 2(a)). Let h denote the hyperplane bounding
this halfspace. We define the base of C to be h ∩K. The apex of C is any point in the cap
such that the supporting hyperplane of K at this point is parallel to h. The width of C,
denoted width(C), is the distance between h and this supporting hyperplane. Given any cap
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Figure 2 (a) Cap concepts and (b) Macbeath regions.

C of width w and a real λ ≥ 0, we define its λ-expansion, denoted Cλ, to be the cap of K
cut by a hyperplane parallel to and at distance λw from this supporting hyperplane. (Note
that Cλ = K, if λw exceeds the width of K along the defining direction.)

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called
an M-region) is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see
Figure 2(b)). Clearly, M1(x) is centrally symmetric about x, and Mλ(x) is a scaled copy of
M1(x) by the factor λ about x. We refer to x as the center of Mλ(x) and to λ as its scaling
factor. As a convenience, we define M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the
latter as the shrunken Macbeath region.

We now present a few lemmas that encapsulate key properties of Macbeath regions. The
first lemma shows that if two shrunken Macbeath regions have a nonempty intersection, then
a constant factor expansion of one contains the other [7, 15, 21].

I Lemma 2.2. Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that
Mλ(x) ∩Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).

The following lemma shows that all points in a shrunken Macbeath region have similar
distances from the boundary of K. The proof appears in [7].

I Lemma 2.3. Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤
4δ(x)/3.

For any δ > 0, define the δ-erosion of a convex body K, denoted K(δ), to be the closed
convex body formed by removing from K all points lying within distance δ of ∂K. The
next lemma bounds the number of disjoint Macbeath regions that can be centered on the
boundary of K(δ). The proof appears in [7].

I Lemma 2.4. Consider a convex body K ⊂ Rd in γ-canonical form for some constant γ.
Define ∆0 = 1

2 (γ2/(4d))d. For any fixed constant 0 < λ ≤ 1/5 and real parameter δ ≤ ∆0,
let M be a set of disjoint λ-scaled Macbeath regions whose centers lie on the boundary of
K(δ). Then |M| = O(1/δ(d−1)/2).

2.2 Shadows of Macbeath regions
Shrunken Macbeath regions reside within the interior of the convex body, but it is useful to
identify the portion of the body’s boundary that this Macbeath region will be responsible for
approximating. For this purpose, we introduce the shadow of a Macbeath region. Given a

SoCG 2017
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convex body K that contains the origin O and a region R ⊆ K, we define the shadow of R
(with respect to K), denoted shadow(R), to be the set of points x ∈ K such that the line
segment Ox intersects R.

We also define a set of normal directions for R, denoted normals(R). Consider the set
of all hyperplanes that support K at some point in the shadow of R. Define normals(R) to
be the set of outward unit normals to these supporting hyperplanes. Typically, the region
R in our constructions will be a (scaled) Macbeath region or an associated John ellipsoid
(as defined in Section 3), close to the boundary of K. The following lemma captures a
salient feature of these shadows, namely, that the shadow of a Macbeath region M ′(x) can
be enclosed in an ellipsoid whose width in all normal directions is O(δ(x)). The proof is
presented in the full version.)

I Lemma 2.5. Let K ⊂ Rd be a convex body in γ-canonical form for some constant
γ. Let x ∈ K be a point at distance δ from the boundary of K, where δ ≤ ∆0. Let
M = M ′(x), S = shadow(M), N = normals(M), and M̂ = M4/γ(x). Then:
(a) S ⊆ M̂ .
(b) widthv(S) ≤ c1δ for all v ∈ N . Here c1 is the constant 8/(3γ).
(c) widthv(M̂) ≤ c2δ for all v ∈ N . Here c2 is the constant 160/(3γ2).

2.3 Representation Conversions

Convex sets are naturally described in two ways, as the convex hull of a discrete set of points
and as the intersection of a discrete set of halfspaces. Some computational tasks are more
easily performed using one representation or the other, and hence it will be useful to convert
between them. Also, when approximate representations suffice, it will be useful to prune a
large set down to a smaller size. In this section we will present a few technical utilities to
perform these conversions. We refer the reader to the full version for the missing proofs.

Given an n-element point set in Rd, Chan showed that it is possible to construct an
ε-kernel of size O(1/ε(d−1)/2) in time O(n+ 1/εd−1) [17]. The following lemma shows that,
by applying Chan’s construction, is is possible to concisely approximate the convex hull of n
points as the intersection of halfspaces.

I Lemma 2.6. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a
polytope in γ-canonical form represented as the convex hull of n points. In O(n+ 1/εd−1)
time it is possible to compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2)
halfspaces such that P ′ is an inner absolute ε-approximation of P .

The following lemma is useful when representing polytopes by the intersection of halfs-
paces.

I Lemma 2.7. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a
polytope in γ-canonical form represented as the intersection of n halfspaces. In O(n+ 1/εd−1)
time it is possible to compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2)
halfspaces such that P ′ is an outer absolute ε-approximation of P .

I Remark. Theorem 1.1 shows that an ε-kernel of size O(1/ε(d−1)/2) can be computed in
time O(n log 1

ε + 1/ε(d−1)/2+α). The construction time in Lemma 2.7 (which is derived in
the full version) is asymptotically dominated by the time needed to construct an ε-kernel.
Therefore, the construction time can be reduced to this quantity.
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3 Hierarchy of Macbeath Ellipsoids

The data structure presented in [7] for the approximate polytope membership problem is
based on constructing a hierarchy of ellipsoids. In this section, we present a variant of this
structure, which will play an important role in our constructions.

For a Macbeath regionMλ(x), we denote its circumscribing John ellipsoid by Eλ(x), which
we call a Macbeath ellipsoid. Since Macbeath regions are centrally symmetric and the constant
in John’s Theorem [22] is

√
d for centrally symmetric bodies, we have Eλ(x) ⊆ Mλ

√
d(x).

Recall the constant ∆0 = 1
2 (γ2/4d)d defined in the statement of Lemma 2.4, and define

λ0 = 1/(20d). We omit the proof of the following lemma due to space limitations. (We
caution the reader that in the lemmas of this section, the value of n used in the application
of the lemma may differ from the original input size.)

I Lemma 3.1. Let γ < 1 be a positive constant, and let 0 < δ ≤ ∆0 be a real parameter.
Let P be a polytope in γ-canonical form, represented as the intersection of n halfspaces. In
O(n/δd−1 + 1/δ3(d−1)/2) time, we can construct a DAG structure satisfying the following
properties:
(a) The total number of nodes (including leaves), and the total space used by the DAG are

each O(1/δ(d−1)/2).
(b) Each leaf is associated with an ellipsoid E4λ0

√
d(x), where x ∈ ∂P (δ). The union of the

ellipsoids associated with all the leaves covers ∂P (δ).
(c) Given a query ray Oq, in O(log 1

δ ) time, we can find a leaf node such that the associated
ellipsoid intersects this ray.

Given a convex body K and query point q, an absolute ε-APM query returns a positive
result if q lies within K, a negative result if q is at distance at least ε from K, and otherwise
it may return either result. After a small enhancement, this DAG can be used for answering
absolute ε-APM queries for a polyope P in γ-canonical form. We assume that P is represented
as the intersection of a set H of n halfspaces. We invoke the above lemma for δ = εγ/(2c1),
where c1 is the constant of Lemma 2.5(b). We then associate each leaf of the DAG with
a halfspace as follows. Let x denote the center of the leaf ellipsoid and let p denote the
intersection of the ray Ox with ∂P . Let h ∈ H denote any supporting halfspace of P
(containing P ) at p. We store h with this leaf. By exhaustive search, we can determine h in
O(n) time, so the total time for this step is O(n/ε(d−1)/2). Asymptotically, this does not
affect the time it takes to construct the data structure. Given a query point q, we answer
queries by first determining a leaf whose ellipsoid intersects the ray Oq. By Lemma 3.1(c),
this takes O(log 1

ε ) time. We return a positive answer if and only if q is contained in the
associated halfspace.

The following lemma summarizes the result, whose proof is presented in the full version.

I Lemma 3.2. Let γ < 1 be a positive constant, and let ε > 0 be a real parameter. Let
P be a polytope in γ-canonical form, represented as the intersection of n halfspaces. In
O(n/εd−1 + 1/ε3(d−1)/2) time, we can construct a data structure that uses O(1/ε(d−1)/2)
space and answers absolute ε-APM queries in O(log 1

ε ) time.

4 Kernel Construction

In this section we establish Theorem 1.1 by showing how to build an ε-kernel efficiently.
The input to an ε-kernel construction consists of the approximation parameter ε and a set
S of n points. Our algorithm is based on a bootstrapping strategy. We assume that we
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10:10 Near-Optimal ε-Kernel Construction and Related Problems

have access to an algorithm that can construct an ε-kernel of O(1/ε(d−1)/2) size in time
O(n log 1

ε + 1/ε(1/2+β)(d−1)), where β > 0 is a parameter. Recall that the size of the kernel
is asymptotically optimal in the worst case. We will present a method for improving the
running time of this algorithm. Recall that Chan [17] gave an algorithm for constructing
kernels of optimal size which runs in time O(n log 1

ε + 1/εd−1). By setting β = 1
2 , this will

form the basis of our bootstrapping, which is described below. Throughout, let δ = ε1/3.

1. Fatten the input point set S by computing an affine transformation that maps S to S′,
such that conv(S′) is in γ-canonical form for some constant γ. By standard results (see,
e.g., the journal version of [4]), this can be done in O(n) time.

2. Using Lemma 2.6, build a polytope P , represented as the intersection of O(1/δ(d−1)/2)
halfspaces, such that P is an inner absolute δ-approximation of conv(S′). This step takes
O(n+ 1/δd−1) = O(n+ 1/ε(d−1)/3) time.

3. Apply Lemma 3.1 to construct a DAG structure for P using the parameter δ. Replac-
ing n in the statement of the lemma by O(1/δ(d−1)/2), it follows that this step takes
O(1/δ3(d−1)/2) = O(1/ε(d−1)/2) time.

4. By Lemma 3.1(c), for each point p ∈ S′, find a leaf of the DAG such that the associated
ellipsoid E4λ0

√
d(x) intersects the ray Op. Recall that x ∈ ∂P (δ). This takes O(log 1

δ ) per
point. In O(1) additional time, determine whether p lies in the shadow of this ellipsoid
(with respect to conv(S′)). If so, associate p with this ellipsoid, and otherwise discard it.
All the points of S′ can be processed in time O(n log 1

δ ) = O(n log 1
ε ).

5. For each leaf ellipsoid of the DAG, build a (c3ε/δ)-kernel for the points of S′ that lie in
its shadow, where c3 is a suitably small constant that will be selected later. This kernel is
computed using the aforementioned algorithm that computes the ε-kernel of a point set
of size n in time O(n log 1

ε + 1/ε(1/2+β)(d−1)). The size of the O(ε/δ)-kernel computed for
each shadow is O((δ/ε)(d−1)/2) and the time required is O(ni log δ

ε + (δ/ε)(1/2+β)(d−1)),
where ni denotes the number of points of S′ in the shadow. Summed over all the shadows,
it follows that the total time required is

O

(
n log δ

ε
+
(

1
δ

)d−1
2
(
δ

ε

)( 1
2 +β)(d−1)

)
= O

(
n log 1

ε
+
(

1
ε

)( 1
2 + 2β

3 )(d−1)
)
.

Here we have used the facts that each point of S′ is assigned to at most one shadow and
the total number of shadows, which is bounded by the number of leaves in the DAG, is
O(1/δ(d−1)/2).

6. Let S′′ ⊆ S′ be the union of the kernels computed in the previous step. Since the number
of shadows is O(1/δ(d−1)/2) and the size of the kernel for each shadow is O((δ/ε)(d−1)/2),
it follows that |S′′| = O(1/ε(d−1)/2). Apply the inverse of the affine transformation
computed in Step 1 to the points of S′′, and output the resulting set of points as the
desired ε-kernel for S.

We have shown that the size of the output kernel is O(1/ε(d−1)/2), as desired. The
running time of Step 5 dominates the time complexity. Our next lemma establishes the
correctness of this construction.

I Lemma 4.1. The construction yields an ε-kernel.

Proof. Throughout this proof, for a given convex body K, we use MK(x), EK(x), and
δK(x) to denote the quantities M(x), E(x), and δ(x) with respect to K. Let P ′ = conv(S′).
By standard results on fattening, it suffices to show that conv(S′′) is an absolute O(ε)-
approximation of P ′. Let v be an arbitrary direction. Consider the extreme point p of S′
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in direction v. Clearly p ∈ ∂P ′. Recall that P is an inner δ-approximation of P ′, and the
ellipsoids associated with the leaves of the DAG cover the boundary of P (δ). Thus, there
must be an ellipsoid E = E4λ0

√
d

P (x), x ∈ ∂P (δ), such that p is assigned to the shadow of
E in Step 4. Note that this shadow and all shadows throughout this proof are assumed to
be with respect to the polytope P ′ (and not P ). We claim that widthv(shadow(E)) ≤ 2c1δ,
where c1 is the constant of Lemma 2.5(b). Assuming this claim for now, let us complete
the proof of the lemma. Recall that in Step 5, we built a (c3ε/δ)-kernel for all the points of
S′ that are assigned to the shadow of E, and S′′ includes all the points of this kernel. It
follows that the distance between the supporting hyperplanes of conv(S′) and conv(S′′) in
direction v is at most (c3ε/δ) · widthv(shadow(E)) ≤ (c3ε/δ) · (2c1δ) = 2c1c3ε. By choosing
c3 sufficiently small, we can ensure that this quantity is smaller than any desired constant
times ε, which proves the lemma.

It remains to show that widthv(shadow(E)) ≤ 2c1δ. Recall that

E = E4λ0
√
d

P (x) ⊆ M4λ0d
P (x) = M ′P (x).

Furthermore, since P ⊆ P ′, a straightforward consequence of the definition of Macbeath
regions is that M ′P (x) ⊆M ′P ′(x). To simplify the notation, let M denote M ′P ′(x). Putting
it together, we obtain E ⊆ M . Thus shadow(E) ⊆ shadow(M), which implies that
widthv(shadow(E)) ≤ widthv(shadow(M)). By Lemma 2.5(b),

widthv(shadow(M)) ≤ c1δP ′(x).

Using the triangle inequality and the fact that P is an inner δ-approximation of P ′, we
obtain δP ′(x) ≤ δP (x) + δ = 2δ. Thus widthv(shadow(E)) ≤ widthv(shadow(M)) ≤ 2c1δ,
as desired. J

We are now ready to establish the main result of this section.

Proof. (of Theorem 1.1) Our proof is based on a constant number of applications of the
algorithm from this section. It suffices to show that there is an algorithm that can construct
an ε-kernel of O(1/ε(d−1)/2) size in time O(n log 1

ε + 1/ε(1/2+β′)(d−1)), where β′ = α/(d− 1).
We initialize the bootstrapping process by Chan’s algorithm [17], which has β = 1

2 .
Observe that the value of β is initially 1

2 and falls by a factor of 2
3 with each application of

the algorithm. It follows that after O(log 1
α ) applications, we will obtain an algorithm with

the desired running time. This completes the proof. J

5 Approximate Polytope Membership

In this section we show how to obtain a data structure for approximate polytope membership,
proving Theorem 1.5. Our best data structure for APM achieves query time O(log 1

ε ) with
storage O(1/ε(d−1)/2) and preprocessing time O(n log 1

ε + 1/ε(d−1)/2+α). As with kernels,
our construction here is again based on a bootstrapping strategy. To initialize the process, we
will use a data structure that achieves the aforementioned query time with the same storage
but with preprocessing time O(n+ 1/ε3(d−1)/2). The data structure is based on Lemma 3.2.
Recall that the input is a polytope represented as the intersection of n halfspaces.

We begin by “fattening” the input polytope. As before, we use an affine transformation
to map the input polytope to a polytope P ′ that is in γ-canonical form. This step takes O(n)
time [4]. By standard results, it suffices to build a data structure for answering absolute
O(ε)-APM queries with respect to P ′ (see, e.g., Lemma 7.1 of the journal version of [4]).
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Next, we apply Lemma 2.7 to construct an outer absolute O(ε)-approximation P of
P ′, where P is represented as the intersection of O(1/ε(d−1)/2) halfspaces. This step takes
O(n+ 1/εd−1) time. Finally, we use Lemma 3.2 to construct a data structure for answering
absolute O(ε)-APM queries with respect to P . Replacing n in the statement of the lemma
by O(1/ε(d−1)/2), it follows that this step takes O(1/ε3(d−1)/2)) time.

The total construction time is O(n+ 1/ε3(d−1)/2). To answer a query, we map the query
point using the same transformation used to fatten the polytope, and then use the data
structure constructed above to determine whether the resulting point lies in polytope P .
Subject to an appropriate choice of constant factors, the correctness of this method follows
from the fact that P is an outer absolute O(ε)-approximation of P ′.

We summarize this result in the following lemma.

I Lemma 5.1. Let ε > 0 be a real parameter and let P be a polytope, represented as the
intersection of n halfspaces. In O(n+ 1/ε3(d−1)/2) time, we can construct a data structure
that uses O(1/ε(d−1)/2) space and answers ε-APM queries in O(log 1

ε ) time.

We now present the details of our bootstrapping approach. We assume that for a
parameter β > 0, in time O(n log 1

ε + 1/ε(1/2+β)(d−1)) we can construct a data structure
that can answer ε-APM queries in O(log 1

ε ) time with O(1/ε(d−1)/2) storage. We present a
method for constructing a new data structure that matches the same storage and query time
but has a lower preprocessing time. Throughout, let δ = εβ/(1+β).

1. As in the kernel construction, first fatten the input polytope by applying an affine
transformation that maps the input polytope to a polytope P ′ that is in γ-canonical form.
By standard results (see, e.g., [4]), this step takes O(n) time, and it suffices to build a
data structure for answering absolute O(ε)-APM queries with respect to P ′.

2. Using Lemma 2.7, build an outer absolute O(ε)-approximation of P ′, denoted P , which
is represented as the intersection of O(1/ε(d−1)/2) halfspaces. By the remark following
Lemma 2.7, this step takes O(n log 1

ε + 1/ε(d−1)/2+α) time.
3. Apply Lemma 3.1 to construct a DAG structure for P using the parameter δ. Replacing n

in the statement of the lemma by O(1/ε(d−1)/2), it follows that this step takes O((1/δ)d−1 ·
(1/ε)(d−1)/2) time.

4. For each leaf of the DAG, construct an APM data structure as follows. Let E = E4λ0
√
d(x)

denote the ellipsoid associated with the leaf. Let R denote the minimum enclosing
hyperrectangle of the ellipsoid E4/γ(x). We will see later that R contains the shadow of E
(with respect to P ), and its width in any direction in normals(E) is at most c2dδ = O(δ),
where c2 is the constant in Lemma 2.5(c).
Using the aforementioned algorithm, construct an APM data structure for this region
with approximation parameter c3ε/δ, where c3 is a sufficiently small constant that we
will select later. Note that each such region can be expressed as the intersection of
ni = O(1/ε(d−1)/2) halfspaces, namely, all the halfspaces defining P together with the 2d
halfspaces defined by the facets of R. The construction time of the APM data structure
for each leaf is

O

(
ni log δ

ε
+
(
δ

ε

)( 1
2 +β)(d−1)

)
= O

((
1
ε

) d−1
2

log δ
ε

+
(
δ

ε

)( 1
2 +β)(d−1)

)
,

and the space used is O((δ/ε)(d−1)/2). Since there are O(1/δ(d−1)/2) leaves, it follows
that the total space is O(1/ε(d−1)/2), and the total construction time is the product of
O(1/δ(d−1)/2) and the above construction time for each leaf.
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Summing up the time over all the four steps, we obtain a total construction time on the
order of(
n log 1

ε
+
(

1
ε

) d−1
2 +α

)
+
(

1
δ

)d−1(1
ε

) d−1
2

+
(

1
δ

) d−1
2

·

((
1
ε

) d−1
2

log δ
ε

+
(
δ

ε

)( 1
2 +β)(d−1)

)
.

Recalling that δ = εβ/(1+β) and assuming that the constant α is much smaller than β, it
follows that the construction time is

O

(
n log 1

ε
+
(

1
ε

)( 1
2 + β

1+β )(d−1)
)
.

We answer queries as follows. We apply the affine transformation of Step 1 to the input
query point to obtain a point q. Recall that it suffices to answer absolute O(ε)-APM queries
for q with respect to P ′. As P is an outer absolute O(ε)-approximation of P ′, it suffices
to answer absolute O(ε)-APM queries for q with respect to P . To answer this query, we
identify a leaf of the DAG such that the associated ellipsoid E intersects the ray Oq. This
takes time O(log 1

δ ). Let y denote an intersection point of this ray with the ellipsoid E. If q
lies on the segment Oy, then q is declared as lying inside P . Otherwise we return the answer
we get for query q using the APM data structure we built for this leaf. It takes time O(log δ

ε )
to answer this query. Including the time to locate the leaf, the total query time is O(log 1

ε ).
Our next lemma shows that queries are answered correctly.

I Lemma 5.2. The query procedure returns a valid answer to the ε-APM query.

Proof. We borrow the terminology from the query procedure given above. As mentioned,
it suffices to show that our algorithm correctly answers absolute O(ε)-APM queries for q
with respect to the polytope P . Recall that we identify a leaf of the DAG whose associated
ellipsoid E = E4λ0

√
d(x) intersects the ray Oq. Recall that y is a point on the intersection of

the ray Oq with E. Clearly, if q lies on segment Oy, then q ∈ P and q is correctly declared
as lying inside P .

It remains to show that queries are answered correctly when ‖Oq‖ > ‖Oy‖. In this case,
we handle the query using the APM data structure we built for the leaf. Recall that this
structure is built for the polytope formed by intersecting P with the smallest enclosing
hyperrectangle R of the ellipsoid E4/γ(x). It suffices to show: (i) shadow(E) ⊆ R and (ii)
widthv(R) ≤ c2dδ for all v ∈ normals(E), where c2 is the constant in Lemma 2.5(c).

To establish (i), recall that Mλ(x) ⊆ Eλ(x) ⊆Mλ
√
d(x) for any λ > 0. Using this fact, it

follows that M4/γ(x) ⊆ E4/γ(x) ⊆ M4
√
d/γ(x). By Lemma 2.5(a), shadow(E) ⊆ M4/γ(x).

Thus shadow(E) ⊆ E4/γ(x) ⊆ R, which proves (i). To prove (ii), note that R ⊆ E4
√
d/γ(x),

since R is the smallest enclosing hyperrectangle of E4/γ(x). Also E4
√
d/γ(x) ⊆ M4d/γ(x).

Thus R ⊆M4d/γ(x). By Lemma 2.5(c), widthv(M4/γ(x)) ≤ c2δ for all v ∈ normals(M ′(x)).
Since R ⊆M4d/γ(x) and E ⊆M ′(x), it follows that widthv(R) ≤ c2dδ for all v ∈ normals(E).

We return to showing that queries are correctly answered when ‖Oq‖ > ‖Oy‖. We
consider two possibilities depending on whether q is inside or outside P . If q ∈ P then
q ∈ shadow(E). By part (i) of the above claim, shadow(E) ⊆ R, and thus q ∈ P ∩ R. It
follows that the APM structure built for the leaf will declare this point as lying inside P ∩R,
and hence the overall algorithm will correctly declare that q lies in P .

Finally, we consider the case when q /∈ P . To complete the proof, we need to show that if
the distance of q from the boundary of P is greater than ε, then q is declared as lying outside
P . Let p denote the point of intersection of the ray Oq with ∂P , let h denote a hyperplane
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supporting P at p, and let v denote the outward normal to h. Recall by part (i) of the claim
that shadow(E) ⊆ R. It follows that h is a supporting hyperplane of P ∩R at p. By part (ii)
of the claim, widthv(R) ≤ c2dδ, and hence widthv(P ∩R) ≤ c2dδ. Recall that the APM data
structure for the leaf is built using the approximation parameter c3ε/δ for some constant c3.
By definition of APM query (in the standard, direction-sensitive sense), the absolute error
allowed in direction v is at most (c3ε/δ) · widthv(P ∩ R) ≤ (c3ε/δ)(c2dδ). By choosing c3
sufficiently small we can ensure that this error is at most εγ. To make this more precise,
let h′ denote the hyperplane parallel to h (outside P ), and at distance εγ from it. Consider
the halfspace bounded by h′ and containing P . By the definition of APM query, if q is not
contained in this halfspace, then q would be declared as lying outside P ∩R, and the overall
algorithm would declare q as lying outside P . Let p′ denote the point of intersection of the
ray Oq with h′. By Lemma 2.1(c), ‖pp′‖ ≤ (εγ)/γ = ε. Thus, if the distance of q from ∂P is
greater than ε, then q cannot lie on segment pp′ and q is correctly declared as lying outside
P . This completes the proof of correctness. J

We now establish the main result of this section.

Proof. (of Theorem 1.5) Our proof is based on a constant number of applications of the
method presented in this section. It suffices to show that there is a data structure with
space and query time as in the theorem and preprocessing time O(n log 1

ε + 1/ε(1/2+β′)(d−1)),
where β′ = α/(d− 1).

We initialize the bootstrapping process by the data structure described in the beginning
of this section, which has β = 1. Recall that applying the method once changes the value
of β to β/(1 + β). It is easy to show that after i applications, the value of β will fall to
1/(i+ 1). Thus, after O(1/α) applications, we will obtain a data structure with the desired
preprocessing time. J

The remaining theorems follow from previous reductions. Theorem 1.2 follows from per-
forming O(1/ε(d−1)/2) width queries [3, 17] using Theorem 1.6. Theorem 1.3 is a consequence
of Theorem 1.5 together with [4, Lemma 9.2 of the journal version] and the construction
from [11, Theorem 3.2]. Theorem 1.4 follows from 1.3 using [11, Theorem 4.1]. Theorem 1.6
follows from Theorem 1.5 by using duality and binary search. Theorem 1.7 is a consequence
of Theorem 1.5 and the reduction presented in [4, Lemma 9.3 of the journal version].
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