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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES∗
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Abstract. In the polytope membership problem, a convex polytope K in Rd is given, and
the objective is to preprocess K into a data structure so that, given any query point q ∈ Rd, it is
possible to determine efficiently whether q ∈ K. We consider this problem in an approximate setting.
Given an approximation parameter ε, the query can be answered either way if the distance from q to
K’s boundary is at most ε times K’s diameter. We assume that the dimension d is fixed, and K is
presented as the intersection of n halfspaces. Previous solutions to approximate polytope membership
were based on straightforward applications of classic polytope approximation techniques by Dudley
[Approx. Theory, 10 (1974), pp. 227–236] and Bentley, Faust, and Preparata [Commun. ACM, 25
(1982), pp. 64–68]. The former is optimal in the worst case with respect to space, and the latter is
optimal with respect to query time. We present four main results. First, we show how to combine
the two above techniques to obtain a simple space-time trade-off. Second, we present an algorithm
that dramatically improves this trade-off. In particular, for any constant α ≥ 4, this data structure
achieves query time roughly O(1/ε(d−1)/α) and space roughly O(1/ε(d−1)(1−Ω(logα)/α)). We do not
know whether this space bound is tight, but our third result shows that there is a convex body such
that our algorithm achieves a space of at least Ω(1/ε(d−1)(1−O(

√
α)/α). Our fourth result shows that

it is possible to reduce approximate Euclidean nearest neighbor searching to approximate polytope
membership queries. Combined with the above results, this provides significant improvements to the
best known space-time trade-offs for approximate nearest neighbor searching in Rd. For example,
we show that it is possible to achieve a query time of roughly O(logn+ 1/εd/4) with space roughly
O(n/εd/4), thus reducing by half the exponent in the space bound.

Key words. polytope membership, nearest neighbor searching, geometric retrieval, space-time
trade-offs, approximation algorithms, convex approximation, Mahler volume
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1. Introduction. Convex polytopes are key structures in many areas of
mathematics and computation. In this paper, we consider a fundamental search
problem related to convex polytopes. Let K denote a convex body in Rd, that is,
a closed, convex set of bounded diameter that has a nonempty interior. We assume
that K is presented as the intersection of n closed halfspaces. (Our results generally
hold for any representation that satisfies the access primitives given at the start of
section 3.) The polytope membership problem is that of preprocessing K so that it is
possible to determine efficiently whether a given query point q ∈ Rd lies within K.
Throughout, we assume that the dimension d is a fixed constant that is at least 2.

It follows from standard results in projective duality that polytope membership
is equivalent to answering halfspace emptiness queries for a set of n points in Rd. In
dimension d ≤ 3, it is possible to build a data structure of linear size that can answer
such queries in logarithmic time [30]. In higher dimensions, however, all known exact
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2 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

ε · diam(K)
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Fig. 1. Approximate polytope membership: (a) problem formulation, (b) outer ε-approximation.

data structures with roughly linear space have a query time of Ω̃(n1−1/bd/2c)1 [43],
which is unacceptably high for many applications. Polytope membership is a special
case of polytope intersection queries [25, 31, 13]. Barba and Langerman [13] showed
that for any fixed d, it is possible to preprocess polytopes in Rd so that given two such
polytopes that have been translated and rotated, it can be determined whether they
intersect each other in time that is logarithmic in their total combinatorial complexity.
However, the preprocessing time and space grow as the combinatorial complexity of
the polytope raised to the power bd/2c.

The lack of efficient exact solutions motivates the question of whether polytope
membership queries can be answered approximately. Let ε be a positive real pa-
rameter, and let diam(K) denote K’s diameter. Given a query point q ∈ Rd, an
ε-approximate polytope membership query returns a positive result if q ∈ K and a neg-
ative result if the distance from q to its closest point in K is greater than ε ·diam(K),
and it may return either result otherwise (see Figure 1(a)). Polytope membership
queries, both exact and approximate, arise in many application areas, such as linear-
programming and ray-shooting queries [20, 24, 46, 44, 42], nearest neighbor searching
and the computation of extreme points [21, 28], collision detection [36], and machine
learning [19].

Existing solutions to approximate polytope membership queries have been based
on straightforward applications of classic polytope approximation techniques. We
say that a polytope P is an outer ε-approximation of K if K ⊆ P , and the Haus-
dorff distance between P and K is at most ε · diam(K) (see Figure 1(b)). An inner
ε-approximation is defined similarly but with P ⊆ K. Dudley [32] showed that
there exists an outer ε-approximating polytope for any bounded convex body in Rd
formed by the intersection of O(1/ε(d−1)/2) halfspaces, and Bronshteyn and Ivanov
[17] proved an analogous bound on the number of vertices needed to obtain an inner
ε-approximation. Both bounds are known to be asymptotically tight in the worst case
(see, e.g., [18]). These results have been applied to a number of problems, for example,
the construction of coresets [2]. By checking that a given query point lies within each
of the halfspaces of Dudley’s approximation, ε-approximate polytope membership
queries can be answered with space and query time of O(1/ε(d−1)/2).

1Throughout, we use Õ(·) and Ω̃(·) as variants of O(·) and Ω(·), respectively, that ignore loga-
rithmic factors. We use “lg” to denote base-2 logarithm.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 3

The principal contribution of this paper is to show that it is possible to achieve
nontrivial space-time trade-offs for approximate polytope membership. In order to
motivate our methods, in section 2 we present a simple space-time trade-off (stated
in the following theorem), which is based on a straightforward combination of the
approximations of Dudley [32] and Bentley, Faust, and Preparata [15]. Throughout,
we will treat n and ε as asymptotic quantities, while the dimension d is a constant.

Theorem 1.1 (simple trade-off). Given a convex polytope K in Rd, a positive
approximation parameter ε, and a real parameter α ≥ 2, there is a data structure for
ε-approximate polytope membership queries that achieves

Query time: O
(

1/ε
d−1
α

)
Space: O

(
1/ε(d−1)(1− 1

α )
)
.

The constant factors in the space and query time depend only on d (not on K, α, or ε).

We will strengthen this trade-off significantly in sections 3 and 4. We will show
that it is possible to build a data structure with O(1/ε(d−1)/2) space that allows
polytope membership queries to be answered in roughly O(1/ε(d−1)/8) time, thus
reducing the exponent in the query time of Theorem 1.1 (for α = 2) by 1/4. Further,
we will show that by iterating a suitable generalization of this construction, we can
obtain the following trade-offs.

Theorem 1.2. Given a convex polytope K in Rd, an approximation parameter
0 < ε ≤ 1, and a real constant α ≥ 4, there is a data structure for ε-approximate
polytope membership queries that achieves

Query time: O
((

log
1
ε

)
/ε

d−1
α

)
Space: O

(
1/ε(d−1)(1− 2blgαc−2

α )
)
.

The constant factors in the space and query time depend only on d and α (not on
K or ε).

The above space bound is a simplification, and the exact bound is given in
Lemma 6.4. Both bounds are piecewise linear in 1/α (with breakpoints at powers
of two), but the bounds of Lemma 6.4 are continuous as a function of α. The re-
sulting space-time trade-off is illustrated in Figure 2(a). (The plot reflects the more
accurate bounds.)

The above theorem is intentionally presented in a purely existential form. This
is because our construction algorithm assumes the existence of a procedure that com-
putes an ε-approximating polytope whose number of bounding hyperplanes is at most
a constant factor larger than optimal. Unfortunately, we know of no efficient solution
to this problem. In Lemma 7.6 we will show that if the input polytope is expressed
as the intersection of n halfspaces, it is possible to build such a structure in time
O(n + 1/εO(1)), such that the space and query times of the above theorem increase
by an additional factor of O(log 1

ε ).
Note that in contrast to many complexity bounds in the area of convex approxi-

mation, which hold only in the limit as ε approaches zero (see, e.g., [37, 40]), Theorems
1.1 and 1.2 hold for any positive ε ≤ 1. The data structure of Theorem 1.2 is quite
simple. It is based on a quadtree subdivision of space in which each cell is repeatedly
subdivided until the combinatorial complexity of the approximating polytope within
the cell is small enough to achieve the desired query time.

We do not know whether the upper bounds presented in Theorem 1.2 are tight for
our algorithm. In section 8, we establish the following lower bound on the trade-off
achieved by this algorithm.
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Fig. 2. The multiplicative factors in the exponent of the 1/ε terms for (a) polytope membership
queries and (b) approximate nearest neighbor (ANN) queries. Each point (x, y) represents a term
of 1/εx(d±O(1)) for storage and 1/εy(d±O(1)) for query time, where the O(1) term does not depend
on d.

Theorem 1.3. In any fixed dimension d ≥ 2 and for any constant α ≥ 4, there
exists a polytope such that for all sufficiently small positive ε, the data structure de-
scribed in Theorem 1.2 when generated to achieve query time O(1/ε(d−1)/α) has space

Ω
(

1/ε(d−1)
(

1− 2
√

2α−3
α

)
−1
)
.

Although α is not an asymptotic quantity, for the sake of comparing the upper
and lower bounds, let us imagine that it is. For roughly the same query time, the α
dependencies appearing in the exponents of the upper bounds on space are (1− 1

α ) for
Theorem 1.1 and (1− Ω(logα)

α ) for Theorem 1.2, and the lower bound of Theorem 1.3
is roughly (1 − O(

√
α)

α ). The trade-offs provided in these theorems are illustrated in
Figure 2(a).

The second major contribution of this paper is to demonstrate that our trade-offs
for approximate polytope membership queries imply significant improvements to the
best known space-time trade-offs for approximate nearest neighbor searching. We are
given a set X of n points in Rd. Given any q ∈ Rd, an ε-approximate nearest neighbor
of q is any point of X whose distance from q is at most (1 + ε) times the distance
to q’s closest point in X. The objective is to preprocess X in order to answer such
queries efficiently. Data structures for approximate nearest neighbor searching (in
fixed dimensions) have been proposed by several authors [22, 33, 38, 28, 47]. The best
space-time trade-offs [10] have query times roughly O(1/εd/α) with storage roughly
O(n/εd(1−2/α)) for α ≥ 2 (see the dashed line in Figure 2(b)).

These results are based on a data structure called an approximate Voronoi diagram
(AVD). In general, a data structure for approximate nearest neighbor searching is said
to be in the AVD model if it has the general form of decomposition of space (generally
a covering) by hyperrectangles of bounded aspect ratio, each of which is associated
with a set of representative points. Given any hyperrectangle that contains the query
point, at least one of these representatives is an ε-approximate nearest neighbor of
the query point [10]. The AVD model is of interest because it is possible to prove
lower bounds on the performance of such a data structure. In particular, the lower
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 5

bounds proved in [10] are shown in the dotted curve in Figure 2(b). By violating the
AVD model, small additional improvements were obtained in [6].

Our improvements to approximate nearest neighbor searching are given in the
following theorem.

Theorem 1.4. Let 0 < ε ≤ 1 be a real parameter, α ≥ 1 be a real constant,
and X be a set of n points in Rd. There is a data structure in the AVD model for
approximate nearest neighbor searching that achieves

Query time: O
(

log n+ (1/εd/2α) · log2 1
ε

)
,

Space: O
(
n ·max

(
log

1
ε
, 1/εd(

1
2−

1
2α )
))

for 1 ≤ α < 2, and

O
(
n/εd(1− blgαcα − 1

2α )
)

for α ≥ 2.

The constant factors in the space and query time depend only on d and α (not on ε).

The above space bound is a simplification of the more accurate bound given
in Lemma 9.5. (Also see the remarks following the proof of this lemma for further
minor improvements achievable by forgoing the AVD model.) As before, both bounds
are piecewise linear in 1/α (with breakpoints at powers of two), but the bounds of
Lemma 9.5 are continuous as a function of α. The resulting space-time trade-off is
illustrated in Figure 2(b). (The plot reflects the more accurate bounds of Lemma 9.5.)

As an example of the strength of the improvement that this offers, observe that
in order for the existing AVD-based results to yield a query time of Õ(1/εd/4) the re-
quired space would be roughly Ω(n/εd/2). The exponent in the space bound is nearly
twice that given by Theorem 1.4, which arises by setting α = 2. The connection be-
tween the polytope membership problem and approximate nearest neighbor searching
has been noted before by Clarkson [28]. Unlike Clarkson’s, our results hold for point
sets with arbitrary aspect ratios.

Our data structure is based on a simple quadtree-based decomposition of space.
Let t denote the desired query time. We begin by preconditioning K so that it is fat
and has at most unit diameter. We then employ a quadtree that hierarchically sub-
divides space into hypercube cells. The decomposition stops whenever we can declare
that a cell is either entirely inside or outside of K, or (if it intersects K’s boundary) it
is locally approximable by at most t halfspaces. This procedure, called SplitReduce, is
presented in section 3. Queries are answered by descending the quadtree to determine
the leaf cell containing the query point, and (if not inside or outside) testing whether
the query point lies within the approximating halfspaces.

Although the algorithm itself is very simple, the analysis of its space requirements
is quite involved. In section 4, we begin with a simple analysis, which shows that it
is possible to obtain a significant improvement over the Dudley-based approach (in
particular, reducing the exponent in the query time by half with no increase in space).
While this simple analysis introduces a number of useful ideas, it is not tight nor does
it provide space-time trade-offs.

Our final analysis requires a deeper understanding of the local structure of the con-
vex body’s boundary. In section 5 we introduce local surface patches of K’s boundary,
called ε-dual caps. We relate the data structure’s space requirements to the existence
of a low cardinality hitting set of the dual caps. We present a two-pronged strategy
for generating such a hitting set, one focused on dual caps of large surface area (intu-
itively corresponding to boundary regions of low curvature) and the other focused on
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6 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

dual caps of small surface area (corresponding to boundary regions of high curvature).
We show that simple random sampling suffices to hit dual caps of high surface area,
and so the challenge is to hit the dual caps of low surface area. To do this, we show
that dual caps of low surface area generate Voronoi patches on a hypersphere enclos-
ing K of large surface area. We refer to this result as the area-product bound, which
is stated in Lemma 5.2. This admits a strategy based on sampling points randomly
on this hypersphere, and then projecting them back to their nearest neighbor on the
surface of K.

The area-product bound is proved with the aid of a classical concept from the
theory of convexity, called the Mahler volume [16, 48]. The Mahler volume of a convex
body is a dimensionless quantity that involves the product of the body’s volume and
the volume of its polar body. We demonstrate that dual caps and their Voronoi
patches exhibit a similar polar relationship. The proof of the area-product bound is
quite technical and is deferred to section 10.

Armed with the area-product bound, in section 6 we establish our final bound on
the space-time trade-offs of SplitReduce, which culminates in the proof of Theorem 1.2.
In section 7 we present details on how the data structure is built and discuss prepro-
cessing time. In section 8 we establish the lower bound result, which is stated in
Theorem 1.3.

Finally, in section 9 we show how these results can be applied to improve the
performance of approximate nearest neighbor searching in Euclidean space. It is well
known that (exact) nearest neighbor searching can be reduced to vertical ray shooting
to a polyhedron that results by lifting points in dimension d to tangent hyperplanes
for a paraboloid in dimension d + 1 [3, 34]. We show how to combine approximate
vertical ray shooting (based on approximate polytope membership) with AVDs to
establish Theorem 1.4.

2. Preliminaries. Throughout, we will use asymptotic notation to eliminate
constant factors. In particular, for any positive real x, let O(x) denote a quantity
that is at most cx for some constant c. Define Ω(x) and Θ(x) analogously. We will
sometimes introduce constants within a local context (e.g., within the statement of
single lemma). To simplify notation, we will often use the same symbol “c” to denote
such generic constants. Recall that we use “lg” to denote the base-2 logarithm. We
will use “log” when the base does not matter. Some of our search algorithms involve
integer grids, and for these we assume a model of computation that supports integer
division.

Let K denote a full-dimensional convex body in Rd, and let ∂K denote its bound-
ary. For concreteness, we assume that K is represented as the intersection of n closed
halfspaces. Our data structure can generally be applied to any representation that
supports access primitives (i)–(iii) given at the start of section 3.

2.1. Absolute and relative approximations. Earlier, we defined approxima-
tion relative to K’s diameter, but it will be convenient to define the approximation
error in absolute terms. Given a positive real r, define K ⊕ r to be a set of points
that lie within Euclidean distance r of K. We say that a polytope P is an absolute
ε-approximation of a convex body K if

K ⊆ P ⊆ K ⊕ ε.
When we wish to make the distinction clear, we refer to the definition in the introduc-
tion as a relative approximation. Henceforth, unless otherwise stated approximations
are in the absolute sense.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 7

In order to reduce the general approximation problem into a more convenient ab-
solute form, we will transform K into a “fattened” body of bounded diameter. Given
a parameter 0 < γ ≤ 1, we say that a convex body K is γ-fat if there exist concentric
Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ. We
say that K is fat if it is γ-fat for a constant γ (possibly depending on d, but not on n
or ε). The following lemma shows thatK can be fattened without significantly altering
the approximation parameter. Let Q(d)

0 denote the d-dimensional axis-aligned hyper-
cube of unit diameter centered at the origin. When d is clear, we refer to this as Q0.

Lemma 2.1. Given a convex body K in Rd and 0 < ε ≤ 1, there exists an affine
transformation T such that T (K) is (1/d)-fat and T (K) ⊆ Q0. If P is an absolute
(ε/d
√
d)-approximation of T (K), then T−1(P ) is a relative ε-approximation of K.

We omit the proof of this lemma for now, since it is subsumed by Lemma 7.1
below. Our approach will be to map K to T (K), set ε′ ← ε/d

√
d, and then apply

an absolute ε′-approximation algorithm to T (K) (or more accurately, to the result of
applying T to each of K’s defining halfspaces). Since ε′ is within a constant factor
of ε, the asymptotic complexity bounds that we will prove for the absolute case will
apply to the original (relative) approximation problem case as well.

2.2. Concepts from quadtrees. By the above reduction, it suffices to con-
sider the problem of computing an absolute ε-approximation to a fat convex body K
that lies within Q0. Our construction will be based on a quadtree decomposition of
Q0. More formally, we define a quadtree cell by the following well-known recursive
decomposition. Q0 is a quadtree cell, and given any quadtree cell Q, each of the 2d

hypercubes that result by bisecting each of Q’s sides by an axis-orthogonal hyper-
plane is also a quadtree cell. A cell Q′ that results from subdividing Q is a child of
Q. Clearly, the child’s diameter is half that of its parent. The subdivision process
defines a (2d)-ary tree whose nodes are quadtree cells and whose leaves are cells that
are not subdivided.

It will be useful to define a notion of approximation that is local to a quadtree
cell Q. An obvious definition would be to approximate K ∩Q. The problem with this
is that a point p ∈ Q that is close to K need not be close to K ∩Q (see Figure 3(a)).
To remedy this we say that a polytope P is an ε-approximation of K within Q if

K ∩Q ⊆ P ∩Q ⊆ (K ⊕ ε) ∩Q

(see Figure 3(b)). This definition implies that for any query point q ∈ Q, we can
correctly answer ε-approximate polytope membership queries with respect to K by
checking whether q ∈ P . We do not care what happens outside of Q, and indeed P
may even be unbounded.

Eδ(K,Q)

δ

Q

K

(c)(b)

Q

(a)

K

K ∩Q

Q

K

p

K ∩Q

P

≤ ε

p

Fig. 3. (a), (b) ε-approximation of K within Q, and (c) Eδ(K,Q).
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As we shall see later, computing an ε-approximation of K within a quadtree
cell Q will generally require that we consider ∂K in a region that extends slightly
beyond Q. We define Eδ(K,Q) to be the portion of ∂K that lies within distance δ of
Q (see Figure 3(c)). Because δ =

√
ε will be of particular interest, we use E(K,Q) as

shorthand for E√ε(K,Q).
In order to apply constructions on quadtree cells of various sizes, it will be conve-

nient to transform all such constructions into a common form. Given a quadtree cell
Q, we define standardization to be the application of an affine transformation that
uniformly scales and translates space so that Q is aligned with the standard quadtree
cell Q0. We transform K using this same transformation and apply the same scale
factor to ε. Although we assume that the input body is contained within Q0, after
standardization, the transformed image of K need not be contained within Q0.

2.3. Polarity and the Mahler volume. Some of our analysis will involve the
well-known concept of polarity. Let us recall some general facts (see, e.g., Eggle-
ston [35]). Given vectors u, v ∈ Rd, let 〈u, v〉 denote their inner product, and let
‖v‖ =

√
〈v,v〉 denote v’s Euclidean length. Given a convex body K ∈ Rd define its

polar to be the convex set

polar(K) = {u : 〈u, v〉 ≤ 1 for all v ∈ K}.

If K contains the origin, then polar(K) is bounded. Given v ∈ Rd, polar(v) is simply
the closed halfspace that contains the origin whose bounding hyperplane is orthogonal
to v and at distance 1/‖v‖ from the origin (on the same side of the origin as v). The
polar has the inclusion-reversing property that v lies within polar(u) if and only if
u lies within polar(v). We may equivalently define polar(K) as the intersection of
polar(v) for all v ∈ K.

Generally, given r > 0, define

polarr(K) = {u : 〈u, v〉 ≤ r2 for all v ∈ K}.

It is easy to see that for any v ∈ Rd, polarr(v) is the closed halfspace at distance
r2/‖v‖ (see Figure 4(a)). Thus, polarr(K) is a uniform scaling of polar(K) by a
factor of r2. In particular, if B is a Euclidean ball of radius x centered at the origin,
then polarr(B) is a concentric ball of radius r2/x.

An important concept related to polarity is the Mahler volume, which is defined
to be the product of the volumes of a convex body and its polar. There is a large
literature on the Mahler volume, mostly for centrally symmetric bodies. Later in the
paper we will make use of the following bound on the Mahler volume for arbitrary

(b)(a)

r
v

r2/‖v‖

polarr(v)
polarr(K)

K

Fig. 4. The generalized polar transform and polar body.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 9

convex bodies (see, e.g., Kuperberg [41]). Given a convex body K in Rd, let vol(K)
denote its volume or, more formally, its d-dimensional Hausdorff measure.

Lemma 2.2 (Mahler volume). There is a constant cm depending only on d such
that given a convex body K in Rd, vol(K) ·vol(polar(K)) ≥ cm. More generally, given
r > 0, vol(K) · vol(polarr(K)) ≥ cm r2d.

2.4. Simple approximation trade-off. Before presenting our results, it will
be illuminating to see how to obtain simple data structures for approximate poly-
tope membership by combining two existing approximation methods. Let us begin by
describing Dudley’s approximation. Assuming that K is contained within Q0, let S
denote the (d−1)-dimensional sphere of radius 3 centered at the origin, which we call
the Dudley hypersphere. (The value 3 is not critical; any sufficiently large constant
suffices.) For δ > 0, a set Σ of points on S is said to be δ-dense if every point of S
lies within distance δ of some point of Σ. Let Σ be a

√
ε-dense set of points on S

(see Figure 5(a)). By a simple packing argument there exists such a set of cardinality
Θ(1/ε(d−1)/2). For each point x ∈ Σ, let x0 be its nearest point on K’s boundary. For
each such point x0, consider the halfspace containing K that is defined by the support-
ing hyperplane passing through x0 that is orthogonal to the line segment xx0. Dudley
shows that the intersection of these halfspaces is an outer ε-approximation of K. We
can answer approximate membership queries by testing whether q lies within all these
halfspaces (by brute force). This approach takes O(1/ε(d−1)/2) query time and space.

An alternative solution is related to a grid-based approximation by Bentley, Faust,
and Preparata [15]. Again, we assume that K is contained within Q0. For the sake
of illustration, let us think of the dth coordinate axis as pointing upward. Partition
the upper facet of Q0 into a (d − 1)-dimensional square grid with cells of diame-
ter ε. A packing argument implies that the number of cells is O(1/εd−1). Extend
each of these cells downward to form a subdivision of Q0 into vertical columns (see
Figure 5(b)). Trim each column at the highest and lowest points at which it inter-
sectsK. Together, these trimmed columns define a collection of hyperrectangles whose
union contains K. The resulting data structure has O(1/εd−1) space. Given a query
point q, in O(1) time we can determine the vertical column containing q (assuming
a model of computation that supports integer division), and we then test whether q
lies within the trimmed column. In contrast to the method based on Dudley’s con-
struction, this method provides a better query time of O(1) but with higher space of
O(1/εd−1).

q

r

K

K

x
x0

S ≤ √ε

q

ε

K

(a) (b) (c)

Fig. 5. The ε-approximations of (a) Dudley and (b) Bentley et al., and (c) the simple trade-off.
(Not drawn to scale.)
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10 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

It is possible to combine these two solutions into a simple unified approach that
achieves a trade-off between space and query time. Given a parameter r, where
ε ≤ r ≤ 1, subdivide Q0 into a grid of hypercube cells each of diameter Θ(r). For
each cellQ that intersectsK’s boundary, apply Dudley’s approximation to this portion
of the polytope. By a straightforward packing argument, the number of grid cells
that intersect K’s boundary is O(1/rd−1) (see, for example, Lemma 3 of [11]). We
apply standardization to Q (thus mapping Q to Q0 and scaling ε to Ω(ε/r)) and
apply Dudley’s construction. By Dudley’s results, the number of halfspaces needed
to approximate K within Q is O((r/ε)(d−1)/2). To answer a query, in O(1) time we
determine which hypercube of the grid contains the query point (assuming a model
of computation that supports integer division). We then apply brute-force search to
determine whether the query point lies within all the associated halfspaces in time
O((r/ε)(d−1)/2). The query time is dominated by this latter term. The space is
dominated by the total number of halfspaces, which is O((1/rd−1) · (r/ε)(d−1)/2) =
O(1/(εr)(d−1)/2). If we express r in terms of a parameter α, where r = ε1−2/α, then
Theorem 1.1 follows as an immediate consequence. Note that the resulting trade-off
interpolates nicely between the two extremes for ε ≤ r ≤ 1.

3. The data structure and construction. In this section we show how to
improve the approach from the previous section by replacing the grid with a quadtree.
The data structure is constructed by the recursive procedure, called SplitReduce,
whose inputs consist of a convex body K and a quadtree cell Q. We are also given the
approximation parameter 0 < ε ≤ 1 and a parameter t ≥ 1 that controls the query
time. Although we assume that K is presented as the intersection of n halfspaces,
this procedure can be applied to any representation that supports the following access
primitives:

(i) Determine whether Q is disjoint from K.
(ii) Determine whether Q is contained within K ⊕ ε.
(iii) Determine whether there exists a set of at most t halfspaces whose intersection

ε-approximates K within Q, and if so generate such a set.
Recall that we assume that K has been transformed so it is (1/d)-fat and lies

within Q0 (the hypercube of unit diameter centered at the origin). The data structure
is built by the call SplitReduce(K,Q0). In general, SplitReduce(K,Q) checks whether
any of the above access primitives returns a positive result, and if so it terminates the
decomposition and Q is declared a leaf cell. Otherwise, it makes a recursive call on
the children of Q (see Figure 6(a)). On termination, each leaf cell is labeled as either
“inside” or “outside” or is associated with a set of at most t approximating halfspaces
(see Figure 6(b)).

SplitReduce(K, Q).
1. If Q ∩K = ∅, label Q as “outside.”
2. If Q ⊆ K ⊕ ε, label Q as “inside.”
3. If there exists a set at most t halfspaces whose intersection provides an
ε-approximation to K within Q, associate Q with such a set P (Q) of mini-
mum size.

4. Otherwise, split Q into 2d quadtree cells and recursively invoke SplitReduce
on each.

For the sake of our space-time trade-offs, we will usually assume that t is reason-
ably large, say, t = Ω(log 1

ε ). Under our assumption that t ≥ 1, steps 1 and 2 are not
needed, since it is possible to ε-approximate any cell satisfying these conditions with a
single halfspace. This assumption on the value of t is mainly a convenience to simplify
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leaf

inside
leaf

leaf

recur

recur

K

outside

(a) (b)

Fig. 6. (a) Cases arising in SplitReduce for t = 2 and (b) the final subdivision.

the formulas of our mathematical analysis. Observe that even if t = 0, the procedure
will terminate and provide a correct answer once the cell diameter falls below ε.

It is easy to see that the recursion must terminate as soon as diam(Q) ≤ ε (since,
irrespective of whether it intersects ∂K, any such cell can be labeled either as “inside”
or “outside”). Of course, it may terminate much sooner. Since Q0 is of unit diameter,
it follows that the height of the quadtree is O(log 1

ε ). The total space used by the
data structure is the sum of the space needed to store the quadtree and the space
needed to store the approximating halfspaces for the cells that intersect K’s boundary.
Our next lemma shows that if the query time is sufficiently large, the latter quantity
dominates the space asymptotically. For each leaf cell Q generated by step 3, define
t(Q) = |P (Q)|, and define t(Q) = 1 for all the other leaf cells.

Lemma 3.1. Given a convex body K ⊆ Q0 in Rd. If t is Ω(log 1
ε ), then the total

space of the data structure produced by SplitReduce(K,Q0) on K for query time t is
asymptotically dominated by the sum of t(Q) over all the leaf cells Q that intersect
K’s boundary.

Proof. Let T denote the quadtree produced by running SplitReduce on K. As
mentioned above, T is of height O(log 1

ε ). By our hypothesis that t is Ω(log 1
ε ), there

exists a constant c such that height(T ) ≤ ct. Let L denote the set of leaves of T that
intersect the boundary of K, and let M denote the internal nodes of T that have the
property that all their children are leaves. (These are the lowest internal nodes of the
tree.) Let t(L) denote the sum of t(Q) over all Q ∈ L.

The fact that each node u ∈M was subdivided by SplitReduce implies that more
than t halfspaces are needed to approximate K within u’s cell. Therefore, the children
of u that intersect K’s boundary together require at least t halfspaces. In addition to
P (Q), each quadtree leaf Q can (implicitly) contribute its 2d bounding hyperplanes
to the approximation. Therefore, t(L) + 2d|L| hyperplanes suffice to approximate K
in all the cells of M , implying that t(L) + 2d|L| ≥ t · |M |. Since t(Q) ≥ 1, we have
t(L) ≥ |L|, and thus (1 + 2d)t(L) ≥ t · |M |.

Each internal node of T either is in M or is an ancestor of a node in M . Thus,
the total number of internal nodes of T is at most |M | ·height(T ). Since each internal
node of a quadtree has 2d children, the total number of nodes in the tree, excluding
the root, is at most

2d · |M | · height(T ) ≤ 2d · |M | · (ct) ≤ 2dc(1 + 2d)t(L) = O(t(L)).

Each internal node of T and each leaf node that does not intersect K’s boundary con-
tributes only a constant amount to the total space. Therefore, the space contribution
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12 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

of the nodes other than those of L is at most a constant factor larger than the total
number of nodes of T , which we have shown is O(t(L)). Therefore, the total space is
O(t(L)), as desired.

A query is answered by performing a point location in the quadtree to determine
the leaf cell containing the query point. If the leaf cell is not labeled as being “inside”
or “outside,” we test whether the query point lies within all the associated halfspaces,
and if so, we declare the point to be inside K. Otherwise it is declared to be outside.
Clearly, the query time is O(log 1

ε + t).
The algorithm is correct provided that the set of halfspaces P (Q) computed in

step 3 defines any ε-approximation of K within Q, but our analysis of the data struc-
ture’s space requirements below (see the proof of Lemma 4.3) relies on the assumption
that the size of P (Q) is within a constant factor of the minimum number of halfspaces
of any ε-approximating polytope within Q. Unfortunately, we know of no constant-
factor approximation to the problem of computing such a polytope. Thus, strictly
speaking, the bounds stated in Theorem 1.2 are purely existential. In section 7 we will
show that through a straightforward modification of the greedy set-cover heuristic, it
is possible to compute an approximation in which the number of defining halfspaces
exceeds the optimum (for slightly smaller approximation parameter) by a factor of at
most ρ = O(log 1

ε ). From the following result it follows that this increases our space
and query time bounds by O(log 1

ε ).

Lemma 3.2. Given any ρ ≥ 1 and any constant 0 < β ≤ 1, if the number of half-
spaces of P (Q) computed in step 3 of SplitReduce is within a factor ρ of the minimum
number of facets of any (βε)-approximating polytope within Q, then Theorems 1.2
and 1.4 hold but with the asymptotic space and query time bounds larger by a fac-
tor of ρ.

Proof. Let us refer to the hypothesized version of SplitReduce whose step 3 is
suboptimal as SplitReduce′. Consider an execution of SplitReduce′ using ρt as the
desired query time and ε as the approximation parameter, and let us compare this
to an execution of SplitReduce using t and βε, respectively. Since β is a constant,
the asymptotic dependencies on ε are unaffected, and therefore the space and query
times stated in Theorems 1.2 and 1.4 apply without modification to the execution of
SplitReduce. In this execution, if the subdivision declares some quadtree cell Q to
be a leaf, then t halfspaces suffice to (βε)-approximate K within Q, and so by our
hypothesis in the corresponding execution of SplitReduce′, step 3 returns at most ρt
halfspaces, implying this execution also declares Q to be a leaf. Therefore, the tree
generated by SplitReduce′ is a subtree of the tree generated by SplitReduce, but each
leaf node may contain up to a factor of ρ more halfspaces. Thus, the asymptotic space
and query time bounds for SplitReduce′ are larger than those of SplitReduce by this
same factor.

4. Simple upper bound. In this section, we present a simple upper bound
of O(1/ε(d−1)/2) on the storage of the data structure obtained by the SplitReduce
algorithm for any given query time t ≥ 1/ε(d−1)/4. The tools developed in this section
will be useful for the more comprehensive upper bounds, which will be presented in
subsequent sections.

Throughout this section we do not necessarily assume that K has been scaled to
lie within Q0 and may generally be much larger. Recall that S denotes a hypersphere
of radius 3 centered at the origin. Let X denote a surface patch of K that lies within
S. Let Vor(X) denote the set of points exterior to K whose closest point on ∂K lies
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K

ε
z0

z
x

x0

S

Fig. 7. Lemma 4.2.

within X. We refer to the surface patch Vor(X) ∩ S (the points of S whose closest
point on ∂K lies within X) as the Voronoi patch of X. Voronoi patches are related to
Dudley’s construction. In particular, a sample point x ∈ S from Dudley’s construction
generates a supporting halfspace at a point of X if and only if x ∈ Vor(X) ∩ S. The
following two lemmas are straightforward adaptations of Dudley’s analysis [32]. The
first is just a restatement of Dudley’s result.

Lemma 4.1. Given a convex body K in Rd that lies within Q0 and 0 < ε ≤ 1,
there exists an ε-approximating polytope P bounded by at most c/ε(d−1)/2 facets, where
c is a constant depending only on d.

The second lemma is a technical result that is implicit in Dudley’s analysis. Given
two points x, y ∈ Rd, let xy denote the segment between them, and let ‖xy‖ denote
the Euclidean length of this segment.

Lemma 4.2. Let K be a convex body, let 0 < ε ≤ 1, and let z and x be two points
of S such that ‖zx‖ ≤ √ε/4. Let z0 and x0 be the points on ∂K that are closest to z
and x, respectively. If z0 is within unit distance of the origin, then

(i) ‖z0x0‖ ≤
√
ε/4 and

(ii) the supporting hyperplane at x0 orthogonal to the segment xx0 intersects seg-
ment zz0 at distance less than ε from z0 (see Figure 7).

The following lemma is an extension of Dudley’s results, which allows us to bound
the complexity of an ε-approximation of K within a quadtree cell Q. Recall from
section 2.2 that E(K,Q) denotes the portion of ∂K that lies within distance

√
ε of Q.

Lemma 4.3. Let K be a convex body, Q ⊆ Q0 be a quadtree cell that intersects
∂K, and 0 < ε ≤ 1/2. Let Σ denote a set of (

√
ε/4)-dense points on the Dudley

sphere S. Then t(Q) ≤ |Σ ∩Vor(E(K,Q))| (see Figure 8(a)).

Proof. We construct an approximating polytope P by the following local variant
of Dudley’s construction. For each point x ∈ Σ ∩Vor(E(K,Q)), let x0 be its nearest
point on the boundary of K. (Note that x0 ∈ E(K,Q).) For each point x0, take the
supporting halfspace to K passing through x0 that is orthogonal to the segment xx0.
Let P be the (possibly unbounded) intersection of these halfspaces.

First, we show that Σ ∩ Vor(E(K,Q)) is nonempty. Consider any point z0 on
∂K ∩ Q. Let z denote any point of S ∩ Vor(E(K,Q)) whose closest point on ∂K is
z0. By definition of Σ, there is a point x ∈ Σ whose distance from z is at most

√
ε/4.

Letting x0 denote x’s closest point on ∂K, by Lemma 4.2(i), ‖z0x0‖ ≤
√
ε/4 <

√
ε.

Thus, x0 lies within E(K,Q), which implies that x ∈ Σ ∩ Vor(E(K,Q)). It follows
that P is bounded by at least one halfspace.

We now show that P is an (outer) ε-approximation of K within Q. Since P is
defined by supporting hyperplanes, K is contained within P . Consider any q ∈ Q that
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14 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

(b)(a)

E(K, Q)

S
qεz′0

x′
x′0

q

Q

z′

q0

Q0

Q

E(K, Q)

SK

Σ ∩ Vor(E(K, Q))
h

Fig. 8. Lemma 4.3. (Not drawn to scale.)

is at distance greater than ε from K. It suffices to show that q /∈ P , that is, there
exists a bounding hyperplane for P that separates q from K. Let q0 denote the point
of K∩Q that is closest to q (see Figure 8(b)). Note that q0 is constrained to lie within
Q, and hence this may not be the closest point to q on ∂K. By continuity, there must
be a point on the segment qq0 that is at distance exactly ε from ∂K, which we denote
by qε. Since Q is convex, this segment is contained in Q, and, hence, so is qε.

Let z′0 be the point on ∂K that is closest to qε. (Note that z′0 need not lie within
Q.) Because Q0 is centered at the origin, z′0’s distance from the origin is at most
diam(Q0)/2 + ‖qεz′0‖ ≤ 1/2 + ε ≤ 1. Let z′ denote the point of intersection with the
Dudley hypersphere S of the ray emanating from z′0 and passing through qε. Let x′

be a point of Σ that lies within distance
√
ε/4 of z′, and let x′0 be its closest point on

∂K. By Lemma 4.2(i) ‖x′0z′0‖ ≤
√
ε/4, and by (ii) the supporting hyperplane h at x′0

orthogonal to the segment x′x′0 intersects segment z′z′0 at distance less than ε from
z′0. Thus, h separates qε from K, and therefore it separates q from K.

To complete the proof that q /∈ P , it suffices to show that h is indeed included in
our construction of P . By the triangle inequality and our assumption that ε ≤ 1/2,
the distance from x′0 to Q is at most

‖x′0z′0‖+ ‖z′0qε‖ ≤
√
ε

4
+ ε ≤ √ε.

It follows that x′0 ∈ E(K,Q), and so h is included in the construction of P . By our
hypothesis that the set P (Q) constructed in step 3 of SplitReduce is the minimum-
sized set of halfspaces needed to ε-approximate K within Q, we have t(Q) = |P (Q)| ≤
|P | = |Σ ∩ Vor(E(K,Q))|. (Note that this works even if Q is an “inside” cell that
intersects K’s boundary. In such a case t(Q) = 1 by definition, and as argued above,
Σ ∩Vor(E(K,Q)) is nonempty.) This completes the proof.

Next, we prove a useful technical lemma, which bounds the total complexity of
a set of leaves whose cells are of a given minimum size. Recalling the definition of Σ
from the previous lemma, we may assume that |Σ| = Θ(1/ε(d−1)/2).

Lemma 4.4. Let K be a convex body in Rd, let 0 < ε ≤ 1/2, and let L denote a
set of disjoint quadtree cells contained within Q0 such that each intersects ∂K and is
of diameter Ω(

√
ε). Then

∑
Q∈L t(Q) = O(1/ε(d−1)/2).

Proof. By applying Lemma 4.3 to each Q ∈ L we have∑
Q∈L

t(Q) ≤
∑
Q∈L
|Σ ∩Vor(E(K,Q))|.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 15

Since |Σ| = O(1/ε(d−1)/2), to complete the proof it suffices to show that each x ∈ Σ
lies within Vor(E(K,Q)) for at most constant number of Q ∈ L. To see this, let
x0 be the point on ∂K that is closest to x. Since each cell Q ∈ L has size at least
Ω(
√
ε), by disjointness and a packing argument it follows that at most a constant

number (depending on dimension) of such cells can lie within distance
√
ε of x0,

which establishes the claim.

Combining the above results, we obtain the main result of this section.

Lemma 4.5. Let K be a convex body in Rd and 0 < ε ≤ 1/2. The output of
SplitReduce(K,Q0) for t ≥ 1/ε(d−1)/4 has total space O(1/ε(d−1)/2).

Proof. Let c2 be the constant of Lemma 4.1, and define c1 = (1/c2)2/(d−1). We
may assume that ε ≤ c21, for otherwise ε = Ω(1) and clearly SplitReduce will not
generate more than a constant number of cells.

Let T denote the quadtree produced by the algorithm, and let L denote the set of
leaf cells of T that intersect the boundary of K. Recall from Lemma 3.1 that the data
structure’s total space is asymptotically bounded by the sum of t(Q) for all Q ∈ L.
Thus, it suffices to prove that∑

Q∈L
t(Q) = O(1/ε(d−1)/2).

Toward this end, we first prove a lower bound on the size of any leaf cell Q.
We assert that the cell Q associated with any internal node has diameter at least
δ = c1

√
ε. It will then follow that each leaf cell has diameter at least δ/2. Suppose

to the contrary that diam(Q) < δ. Recall the standardization transformation from
section 2.2, which maps Q to Q0 and scales ε to at least ε/δ =

√
ε/c1. Let us denote

this value by ε′. Since ε ≤ c21, we have ε′ ≤ 1. By applying Lemma 4.1 to the
transformed body (with ε′ playing the role of ε), it follows that the polytope K ∩Q
can be ε-approximated by a polytope P defined by the intersection of at most

c2
(ε′)(d−1)/2 = c2

(
c1√
ε

)(d−1)/2

≤ 1
ε(d−1)/4

halfspaces. Since K ∩ Q ⊆ P , it is easy to see that P is an ε-approximation of K
within Q. Since t ≥ 1/ε(d−1)/4, the termination condition of our algorithm implies
that such a cell is not further subdivided, contradicting our hypothesis that this is
an internal node. Therefore, the cells of L satisfy the conditions of Lemma 4.4. The
desired bound follows by applying this lemma.

It is useful to contrast this with the Dudley-based approach described in
section 2.4. For t = 1/ε(d−1)/4, we obtain the same O(1/ε(d−1)/2) space in each case,
but the exponent in the query time of SplitReduce is only half that of the Dudley-
based approach. Later, in Lemma 6.3, we will present a more refined analysis showing
that it is possible to reduce this further, achieving a query time of only Õ(1/ε(d−1)/8).

It will be useful in later sections to generalize the above lemma to quadtree cells
of arbitrary size. By a direct application of standardization, we obtain the following.

Lemma 4.6. Let K be a convex body in Rd, let Q be a quadtree cell contained
within Q0, and let 0 < ε ≤ diam(Q)/2. The output of the call SplitReduce(K,Q) for
t ≥ (diam(Q)/ε)(d−1)/4 has total space O((diam(Q)/ε)(d−1)/2).

5. Dual caps and approximation. The bounds proved in the previous section
apply to query times t ≥ 1/ε(d−1)/4. In section 6 we will show how to obtain good
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pε
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Dδ(p)
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D(p)
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ε
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pε
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KD(p)

Vor(D(p)) ∩ S

(c)

pε

K

Dδ(p)

p
δ

Fig. 9. (a) Dual caps, (b) restricted dual caps, and (c) the Voronoi patch of a dual cap.

space bounds for smaller query times. This will involve analyzing the local geometry
about small boundary patches of the convex body. In this section, we introduce the
principal geometric underpinnings that will be needed for this more refined analysis.
In particular, we discuss the concepts of dual caps and restricted dual caps and their
role in polytope approximation.

Although we do not assume that K is smooth, it will simplify the presentation to
imagine that each boundary point has a unique supporting hyperplane and a unique
normal vector. To achieve this, we employ an augmented representation of the bound-
ary points of K. In particular, each boundary point p ∈ ∂K will be expressed as a
pair (p, h), where h is a supporting hyperplane at p. We will often refer to h as h(p).
When h is clear from context or unimportant, we avoid explicit reference to it.

We first observe that computing an outer ε-approximation of a convex body K
by halfspaces can be reduced to a hitting-set problem. Consider any point pε that is
external to K at distance ε from its boundary, and let (p, h) denote the augmented
boundary point consisting of the closest point p ∈ ∂K to pε and the supporting
hyperplane through p that is orthogonal to the segment ppε (see Figure 9(a)). We
define the ε-dual cap of p, denoted D(p), to be the set of augmented boundary points
(q, h′) such that the supporting hyperplane h′ through q intersects the closed line
segment ppε. (Equivalently, these are the points of ∂K that are visible to pε.)

Any outer ε-approximation of K by halfspaces must contain at least one halfspace
that separates p from pε, and this can be achieved by including h′ for any pair (q, h′)
within D(p). A set of augmented points Σ ⊆ ∂K is said to be an ε-hitting set for
K if for every p ∈ ∂K, Σ ∩D(p) 6= ∅. It follows directly that the intersection of the
supporting halfspaces for any ε-hitting set is an outer ε-approximation of K. This
observation will be formalized within our quadtree-based context in our next lemma.
Before stating the lemma, we need to introduce one additional concept. In order to
approximate K within a given quadtree cell Q, we are interested only in the geometry
of K’s boundary that lies close to Q. For this reason, it will be desirable to limit
the diameter of dual caps. Given δ > 0, let Bδ(p) denote the closed Euclidean ball
of radius δ centered at p. Define the δ-restricted dual cap, denoted Dδ(p), to be the
intersection of D(p) with Bδ(p) (see Figure 9(b)).

Lemma 5.1. Let K be a convex body, let Q ⊆ Q0 be a quadtree cell that intersects
∂K, and 0 < ε ≤ 1/2. Let Σ be any set of augmented points on E(K,Q) that
hits the set of all

√
ε-restricted ε-dual caps whose defining point is in E(K,Q) (see

Figure 10(a)). Then there is a polytope P defined as the intersection of |Σ| halfspaces
that ε-approximates K within Q.

Proof. Let P be the polytope defined by the intersection of the supporting
halfspaces associated with each augmented point of Σ (see Figure 10(b)). Clearly,
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√
ε
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Q

K

(a) (c)

q

q0 = z0
x0

qε

E(K,Q)

Q

P

(b)

Σ

h0

Fig. 10. Lemma 5.1.

K ⊆ P . Consider any point q ∈ Q that is at distance greater than ε from K ∩Q. It
suffices to show that q /∈ P , that is, there exists a bounding hyperplane for P that
separates q from K.

We apply a similar argument to the one that we used in the proof of Lemma 4.3.
Consider any q ∈ Q that is at distance greater than ε from K (see Figure 10(c)). It
suffices to show that there exists a bounding hyperplane for P that separates q from
K. Let q0 denote the point of K ∩Q that is closest to q. By continuity, there must be
a point on the segment qq0 that is at distance exactly ε from ∂K, which we denote
by qε. Since Q is convex, this segment must be contained in Q, and, hence, so is qε.

Let z0 be the point on ∂K that is closest to qε. (In our figure z0 = q0, but
generally z0 need not lie within Q.) Since ε ≤ 1, we have ‖qεz0‖ = ε ≤ √ε. It follows
that z0 ∈ E(K,Q). Therefore, there exists an augmented point (x0, h0) ∈ Σ that
hits the

√
ε-restricted ε-dual cap defined by z0 (whose apex is at qε). The supporting

hyperplane h0 separates qε (and therefore q) from K, as desired.

Our analysis of the space bounds of SplitReduce is based on the combined sizes
of the ε-hitting sets for K within each quadtree cell Q. Dudley’s construction can be
viewed as one method of computing ε-hitting sets. Unfortunately, Dudley’s construc-
tion does not lead to the best bounds because it tends to oversample in regions of
very low or very high curvature. Our analysis will be based on a more refined, area-
based approach to bounding the sizes of hitting sets. The key geometric observation
is that the product of the areas of any ε-dual cap and its associated Voronoi patch
on the Dudley sphere S must be large. Intuitively, if the surface area of an ε-dual
cap is small, then the total curvature of the patch must be high, and so the associ-
ated Voronoi patch must have relatively large area (see Figure 9(c)). More precisely,
we show that (under certain conditions) the product of the areas of an ε-dual cap
and its Voronoi patch is Ω(εd−1). This result is stated formally in Lemma 5.2 be-
low. Given a (d− 1)-dimensional manifold, let area(Y ) denote its (d− 1)-dimensional
Hausdorff measure. Given a convex body X in Rd, we use area(X) as a shorthand for
area(∂X).

Lemma 5.2 (area-product bound). Let K be a convex body in Rd, and let 0 <
ε ≤ 1/8. Consider a pair (p, h(p)), where p ∈ ∂K and h(p) is a supporting hyperplane
passing through p. Let D denote the

√
ε-restricted ε-dual cap whose defining point

is p. If K is fat and of diameter at least 2ε, there exists a constant ca (depending
only on d) such that if p lies within a unit ball centered at the origin, then area(D) ·
area(Vor(D) ∩ S) > ca · εd−1.

The proof of the lemma is quite technical and will be deferred to section 10.
The geometric basis of the proof involves the Mahler volume, which was introduced
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18 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

in section 2.3. The bound stated in the lemma holds if K is γ-fat for any γ in the
interval (0, 1] under the assumption that γ does not depend on ε. In particular, the
proof will reveal that ca = Ω(γd−1).

We will exploit this observation to demonstrate the existence of smaller ε-hitting
sets than those given by Dudley’s construction. We will hit the restricted ε-dual caps
that have large surface area by sampling points randomly on the boundary of K, and
we will hit those with small surface area by sampling points randomly on the Dudley
hypersphere and then selecting their nearest neighbors on ∂K. In order to prove
that such a random sampling strategy works to stab all the dual caps, we need to
establish bounds on the VC-dimension of an appropriate range space based on dual
caps. This is not surprising given that dual caps and restricted dual caps are defined
by a constant number of parameters. The result is stated in the following lemma. The
proof involves a straightforward application of basic geometric principles. (Details can
be found in [8].)

Lemma 5.3. Let K be a convex body in Rd that lies within Q0, and let ε and δ
be positive real parameters. The following range spaces (Xi, Ri) have constant VC-
dimension (where the constant depends only on d):

1. X1 = ∂K and R1 is the set of ε-dual caps.
2. X2 = S and R2 is the set of Voronoi patches of the ε-dual caps.
3. X3 = ∂K and R3 is the set of δ-restricted ε-dual caps.
4. X4 = S and R4 is the set of Voronoi patches of the δ-restricted ε-dual caps.

In the next section we will exploit this result to establish the existence of small
ε-nets for these range spaces. Note that the range spaces defined in this lemma are
defined over ∂K, a domain of infinite cardinality. However, for our purposes, it suffices
to consider dual caps and restricted dual caps whose defining points are drawn from
any sufficiently dense set of points on ∂K (depending on ε), and therefore the domains
of the range spaces can be treated as finite sets.

6. Final upper bound. In this section, we use the tools developed in sections
4 and 5 to obtain better upper bounds for approximate polytope membership. In
particular, we present a proof of Theorem 1.2. We will first show how to apply the
area-based techniques described in the previous section to improve the simple upper
bound from Lemma 4.5 at the low-space end of the trade-off spectrum. (This will
be presented in Lemma 6.3.) We will then apply this improvement repeatedly in
an inductive manner to establish trade-offs throughout the spectrum. For technical
reasons, many of the lemmas of this section assume constant upper bounds on the
value of ε. There is no loss of generality in doing so, since it is easy to show that if
ε is bounded below by any fixed constant, the asymptotic space and query times of
SplitReduce are both O(1).

Throughout this section, recall that Eδ(K,Q) is the portion of ∂K that is within
distance δ of Q, and E(K,Q) = E√ε(K,Q). Also, define E+(K,Q) = E2

√
ε(K,Q).

We will assume that diam(K) ≥ 2ε, for otherwise it is trivial to compute an ε-
approximation of constant size. Our first result establishes an area-based bound on
the number of halfspaces needed to approximate K within a quadtree cell Q.

Lemma 6.1. Let K be a fat convex body in Rd, let 0 < ε ≤ 1/8, and let Q ⊆ Q0
be a quadtree cell that intersects ∂K. Letting ca denote the constant of Lemma 5.2,
define

r =
(

area(E+(K,Q)) · area (Vor(E+(K,Q)) ∩ S)
ca · εd−1

)1/2

.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 19

There is a polytope P defined as the intersection of O(r log r) halfspaces that is an
ε-approximation of K within Q.

Proof. Letting AK = area(E+(K,Q)) and AS = area (Vor(E+(K,Q)) ∩ S), we
can express the value of r more succinctly as (AKAS/ca εd−1)1/2. First, we assert that
r = Ω(1). To see this, we consider two cases. First, if K lies entirely within distance
2
√
ε of Q, then Vor(E+(K,Q))∩S = S, which implies that AS = Ω(1). Since K is fat

and by our assumption that diam(K) ≥ 2ε, it follows that AK = Ω(εd−1). Therefore,
r = Ω(1). On the other hand, if some part of K lies at distance greater than 2

√
ε

from Q, E+(K,Q) is a boundary patch of K of diameter Ω(
√
ε). Since both K and

Q are fat, it follows that AK = Ω(ε(d−1)/2). By convexity, as we go from a boundary
patch on K to its Voronoi cell on S, distances cannot decrease. Therefore AS ≥ AK ,
and again we have r = Ω(1). Through a minor adjustment to constant factor ca in
r’s definition, we may assume that log r ≥ 1.

By Lemma 5.1, in order to show the existence of an ε-approximating polytope P
for K within Q, it suffices to show that it is possible to hit all

√
ε-restricted ε-dual

caps whose defining point lies in E(K,Q) (not to be confused with E+(K,Q)) using
O(r log r) points. To do this, we distinguish between two types of such restricted
dual caps. A restricted dual cap D is of type 1 if area(D) ≥ (ca εd−1AK/AS)1/2, and
otherwise it is of type 2.

By assertions 3 and 4 of Lemma 5.3, we know that
√
ε-restricted ε-dual caps and

their Voronoi patches both have constant VC-dimension. The VC-dimension is no
larger if we restrict the domain of the range space. Therefore, by standard machinery
(see, e.g., [4]) we can build a (1/r)-net for any restriction of these range spaces of size
O(r log r) each by random sampling.

For type-1 dual caps, consider the restriction (E+(K,Q), R3) of the range space
given in Lemma 5.3.3. Let Σ1 denote a (1/r)-net. Consider any type-1 dual cap D.
Since D’s defining point lies within E(K,Q) and it is

√
ε-restricted, it lies entirely

within E+(K,Q). Thus, we have

area(D ∩ E+(K,Q))
area(E+(K,Q))

=
area(D)

area(E+(K,Q))
≥
(
ca · εd−1AK/AS

)1/2
AK

=
(
ca · εd−1

AKAS

)1/2

=
1
r
.

Therefore D contains at least one point of Σ1. It follows that Σ1 hits all type-1 dual
caps.

For type-2 dual caps, let us consider the restriction (Vor(E+(K,Q))∩S,R4) of the
range space of Lemma 5.3.4. Let Σ2 denote a (1/r)-net. Because ε ≤ 1/8 and Q ⊆ Q0,
E(K,Q) lies within a ball centered at the origin of radius diam(Q0)/2 +

√
ε ≤ 1.

Given any type-2 dual cap D whose defining (augmented) point lies in E(K,Q), we
may apply Lemma 5.2 to obtain

area(Vor(D) ∩ S) ≥ ca · εd−1

area(D)
≥ ca · εd−1(

ca · εd−1AK/AS
)1/2 =

(
ca · εd−1AS

AK

)1/2

.

As before, since D’s defining point lies within E(K,Q), D ⊆ E+(K,Q). From this
we have
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area(Vor(D ∩ E+(K,Q)) ∩ S)
area(Vor(E+(K,Q)) ∩ S)

=
area(Vor(D) ∩ S)

area(Vor(E+(K,Q)) ∩ S)

≥
(
ca · εd−1AS/AK

)1/2
AS

=
(
ca · εd−1

AKAS

)1/2

=
1
r
.

Therefore Vor(D) ∩ S contains at least one point of Σ2, implying that Σ2 hits the
Voronoi patches of all type-2 dual caps. For each point of Σ2, we select its nearest
neighbor on ∂K, obtaining a set Σ′2 ⊂ E+(K,Q). It follows directly that the set
Σ′2 hits all type-2 dual caps. Therefore, the union Σ1 ∪ Σ′2 forms the desired set of
size O(r log r) that hits all

√
ε-restricted ε-dual caps whose defining point lies within

E(K,Q).

In order to establish our storage bounds, we analyze the behavior of the algo-
rithm at a particular level of the decomposition. Given the query-time parameter
t, recall that we stop the subdivision process in SplitReduce(K,Q) if the number of
hyperplanes needed to approximate K within Q falls below t. Also recall that t(Q)
denotes the number of approximating halfspaces associated with Q. Let us consider
the state of the subdivision process when the cell sizes reach roughly

√
ε. Cells that

have stopped subdividing by this point are “good,” since we can bound the total space
requirements for all such cells by appealing to Lemma 4.4. For the remaining “bad”
cells, we will bound their space requirements on a cell-by-cell basis by using the simple
upper bound from Lemma 4.6. For our approach to work well, it is crucial to obtain a
good bound on the number of such bad cells. We exploit the area bound of Lemma 6.1
for this purpose. Whenever SplitReduce subdivides a cell of size O(

√
ε), we can infer

that more than t hyperplanes are required to approximate K within this cell. Since
the portion of ∂K lying within this cell is small, the area of its Voronoi patch on the
Dudley sphere must be large. A packing argument applied on the Dudley sphere will
be used to limit the number of these bad cells.

In order to formalize the notion of good and bad cells, let T denote the quadtree
produced by SplitReduce(K,Q0), and let T ′ denote the subtree of T induced by cells
of diameter at least

√
ε/2. For the remainder of this section, let L1 denote the (good)

leaf cells of T ′ that are not subdivided further by the algorithm, and let L2 be the
remaining (bad) leaf cells of T ′. The cells of L1 and L2 are all of diameter Ω(

√
ε). Each

cell in L1 can be approximated using at most t halfspaces, and those in L2 require
more. In our next lemma, we bound the total number of approximating halfspaces
over all the good leaf cells and the total number of bad leaf cells.

Lemma 6.2. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/8. Let T denote
the quadtree produced by SplitReduce(K,Q0) for t ≥ 1, and let L1 and L2 be as defined
above. Then

(i)
∑
Q∈L1

t(Q) = O(1/ε(d−1)/2),
(ii) |L2| = O((1 + log t)/t)2(1/ε)(d−1)/2).

Proof. Because the cells of L1 are disjoint and each is of diameter Ω(
√
ε), as-

sertion (i) follows as a direct consequence of Lemma 4.4. Thus, it remains to prove
assertion (ii). Let Q be any cell of L2. Since any child of a cell of L2 is of diameter
smaller than

√
ε/2 and Q’s diameter is twice this, we have

√
ε/2 ≤ diam(Q) <

√
ε.

Recall that E+(K,Q) = E2
√
ε(K,Q). Also, let AK(Q) and AS(Q) denote the values

of AK and AS , respectively, from the proof of Lemma 6.1, when applied to Q.
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Because diam(Q) ≤ √ε and E+(K,Q) involves a boundary patch of K that
intersects Q and includes an additional expansion by distance 2

√
ε, it follows that this

boundary patch has diameter O(
√
ε). Therefore, AK(Q) = O(ε(d−1)/2). By applying

Lemma 6.1 (and recalling the constant ca from Lemma 5.2), we have t(Q) = O(r log r),
where

r =
(

area(E+(K,Q)) · area (Vor(E+(K,Q)) ∩ S)
ca · εd−1

)1/2

=
(
AK(Q)AS(Q)
ca · εd−1

)1/2

= O

(√
AS(Q)
ε(d−1)/2

)
.

In Lemma 6.1 we showed that (after a suitable adjustment to ca) we have log r ≥
1. Since Q is subdivided further, we know that t(Q) > t, which implies that t =
O(r log r). Because t ≥ 1, by simple manipulations we have t/(1 + log t) = O(r). By
combining this with the upper bound on r from above, we obtain AS(Q) = Ω((t/(1 +
log t))2ε(d−1)/2), which yields the lower bound

∑
Q∈L2

AS(Q) = |L2| · Ω
((

t

1 + log t

)2

ε
d−1
2

)
.

As shown in the proof of Lemma 4.4, given any set of disjoint quadtree cells of
diameter Ω(

√
ε) a point of S can be in Vor(E+(K,Q)) for at most a constant number

of these cells. Since the quadtree cells of L2 satisfy these conditions,∑
Q∈L2

AS(Q) =
∑
Q∈L2

area(Vor(E+(K,Q)) ∩ S) = O(area(S)).

Combining this with our lower bound, we have

|L2| = O

(
area(S) ·

(
1 + log t

t

)2

·
(

1
ε

)d−1
2
)
.

Since S is a hypersphere of constant radius, its area is bounded, and assertion (ii)
follows immediately.

Recall that we showed in Lemma 4.5 that it is possible to answer approximate
membership queries in 1/ε(d−1)/4 time using space O(1/ε(d−1)/2). By using the above
lemma, we show next that we can improve this to achieving query time roughly
O(1/ε(d−1)/8) for the same space.

Lemma 6.3. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/16. For
t ≥ (lg 1

ε )/ε(d−1)/8, the output of SplitReduce(K,Q0) has total space O(1/ε(d−1)/2).

Proof. Let T denote the quadtree produced by the algorithm. By Lemma 3.1, the
data structure’s total space is dominated by the space needed to store the hyperplanes
in the leaf cells. Thus, it suffices to show that the sum of t(Q) over all leaf cells Q
of T is O(1/ε(d−1)/2). Let T ′, L1, and L2 be as defined just prior to Lemma 6.2. By
Lemma 6.2(i), the total contribution of t(Q) for all cells in L1 is O(1/ε(d−1)/2). So,
it suffices to bound the contribution due to L2.

Let Q be any cell of L2. Recall from the proof of Lemma 6.2 that
√
ε/2 ≤

diam(Q) ≤ √ε. Since t ≥ 1/ε(d−1)/8, it follows that t ≥ (diam(Q)/ε)(d−1)/4. Be-
cause ε ≤ 1/16, we have ε ≤ √ε/4 ≤ diam(Q)/2. By Lemma 4.6, the output of
SplitReduce(K,Q) has total space at most
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O

((
diam(Q)

ε

)d−1
2
)

= O

((
1
ε

)d−1
4
)
.

By Lemma 6.2(ii), |L2| = O(((1 + log t)/t)2(1/ε)(d−1)/2). Since t ≥ (lg 1
ε )/ε(d−1)/8,

we have |L2| = O(1/ε(d−1)/4). Summing up the space contributions of all Q ∈ L2,
the total space for these cells is

|L2| ·O
(
1/ε(d−1)/4) = O

(
1/
(
ε(d−1)/4 · ε(d−1)/4)) = O

(
1/ε(d−1)/2),

as desired.

In order to extend the space-time trade-off to other query times, we will apply
the previous result as the basis case in an induction argument. The induction will be
controlled by a parameter α, which we assume to be a constant. The proof is rather
technical, but it involves a straightforward application of the earlier results of this
section.

Lemma 6.4. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/16. Let α ≥ 4
be a real-valued constant. For t ≥ (lg 1

ε )/ε(d−1)/α, the output of SplitReduce(K,Q0)
has total space

O

(
1/ε(d−1)

(
1−2

(
blgαc−2

α + 1
2blgαc

)))
.

Proof. Define k = blgαc, which implies that k ≥ 2, and 2k ≤ α < 2k+1. Expressed
as a function of k, the desired space bound can be expressed as

ck ·
(

1/ε(d−1)(1−2( k−2
α + 1

2k ))
)

(1)

for a constant ck (depending on k but not on ε).
We begin exactly as in the proof of the previous lemma. Let T denote the quadtree

produced by the algorithm, and by Lemma 3.1, it suffices to bound the sum of t(Q)
over all leaf cells of T . Given T ′, L1, and L2 defined prior to Lemma 6.2, the space
contribution due to the cells of L1 is O(1/ε(d−1)/2). To see that this satisfies our space
bound, observe that since k ≥ 2 and α ≥ 2k, we have

1
4
≥ k − 1

2k
=

k − 2
2k

+
1
2k
≥ k − 2

α
+

1
2k
.

Therefore, the total contribution of t(Q) for all cells in L1 is

O
(
1/ε(d−1)/2) = O

(
1/ε(d−1)(1−2( 1

4 ))
)
≤ O

(
1/ε(d−1)(1−2( k−2

α + 1
2k ))

)
,(2)

which matches the desired bound given in (1).
It remains to bound the contribution to the space of the cells of L2. We do

this by induction on k. For the basis case k = 2, we have 4 ≤ α < 8. Therefore
t > (lg 1

ε )/ε(d−1)/8. By applying Lemma 6.3, the total space of the data structure
(which includes the contribution of L2) is O(1/ε(d−1)/2). It follows from (2) (for the
case k = 2) that this satisfies our storage bound.

For the induction step, we assume that the lemma holds for k−1 (that is, 2k−1 ≤
α/2 < 2k), and our objective is to prove it for k. It will be convenient to express
the induction hypothesis in a form that holds for an arbitrary quadtree cell Q ⊆ Q0.
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By applying standardization to Q (thus mapping Q to Q0 and scaling ε to ε/diam(Q)),
the induction hypothesis states that for

0 < ε ≤ diam(Q)
16

and t ≥
(

lg
diam(Q)

ε

)
·
(

diam(Q)
ε

)d−1
α/2

,(3)

there is a constant ck−1 such that the output of SplitReduce(K,Q) has total space at
most

ck−1 · (diam(Q)/ε)(d−1)(1−2( k−3
α/2 + 1

2k−1 )).(4)

Let Q be any cell of L2. In the proof of Lemma 6.2 we showed that
√
ε/2 ≤

diam(Q) <
√
ε. By the bound on t from the statement of this lemma, we have

t ≥
(

lg
1
ε

)(
1
ε

)d−1
α

≥
(

lg
1√
ε

)(
1√
ε

)2(d−1)
α

≥
(

lg
diam(Q)

ε

)(
diam(Q)

ε

)d−1
α/2

,

implying that t satisfies (3). If ε is at most diam(Q)/16, we may apply the induction
hypothesis, yielding the space bound given in (4). Since diam(Q) <

√
ε, this can be

simplified to

ck−1 · (1/
√
ε)(d−1)(1−2( k−3

α/2 + 1
2k−1 )) = ck−1 · 1/ε(d−1)( 1

2−
2(k−3)
α − 1

2k−1 ).(5)

By combining Lemma 6.2(ii) with the lower bound on t given in the statement of
this lemma, the number of cells in L2 satisfies

|L2| = O

((
lg t
t

)2(1
ε

)d−1
2
)

= O

(
ε

2(d−1)
α

(
1
ε

)d−1
2
)

= O

((
1
ε

)(d−1)( 1
2−

2
α ))

.

(6)

The total contribution to the space by the cells of L2 is the product of the space
requirements for each cell of L2, given in (5), and the number of such cells, given in
(6). There exists a constant ck (depending on k but not on ε) such that the total
space is at most

ck ·
(

1/ε(d−1)(( 1
2−

2(k−3)
α − 1

2k−1 )+( 1
2−

2
α ))
)

= ck ·
(

1/ε(d−1)(1−2( k−2
α + 1

2k ))
)
.

On the other hand, if ε exceeds diam(Q)/16, then since diam(Q) ≥ √ε/2 it follows
that ε is Ω(1), and we can adjust to ck to satisfy this bound. In either case, we achieve
the bound in (1).

Observe that the exponent in the space bound in the preceding lemma is a piece-
wise linear function in 1/α, whose breakpoints coincide with powers of two. It is easily
verified that the exponent is a continuous function of α. (In particular, observe that
limδ→0 f(2k−δ) = f(2k), where f(α) = 1/2blgαc + (blgαc − 2)/α.)

We can now present the proof of Theorem 1.2. Recall that K is a convex polytope
in Rd. By Lemma 2.1, we can precondition K so that it is (1/d)-fat and is contained
within Q0, thus allowing us to approximate K absolutely. Also, if 1/16 < ε ≤ 1,
we set ε = 1/16. (Both of these changes result in a constant factor decrease to ε,
which will not affect the asymptotic bounds.) We then set t = (lg 1

ε )/ε(d−1)/α and
invoke SplitReduce(K,Q0). Let T denote the resulting data structure. Given the
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preconditioning of K and the alteration of ε, we may apply Lemma 6.4 to show that
the total space for T is

O

(
1/ε(d−1)

(
1−2

(
blgαc−2

α + 1
2blgαc

)))
.

Using the fact that 1/2blgαc ≥ 1/α, this is

O
(

1/ε(d−1)(1−2( blgαc−2
α + 1

α ))
)

= O
(

1/ε(d−1)(1− 2blgαc−2
α )

)
,

which matches the space bound of Theorem 1.2.
Recall that a query is answered by locating the leaf node of T that contains the

query point, followed by an inspection of the (at most) t halfspaces stored in this
leaf node. By our remarks following the presentation of SplitReduce, T is of height
O(log 1

ε ), which implies that the query time is dominated by the value of t. This
completes the proof of Theorem 1.2.

7. Preprocessing. Our principal focus so far has been on establishing the exis-
tence of trade-offs between space and query time, without considering how to construct
the data structure. In this section we discuss preprocessing issues. We first discuss the
preconditioning of K as described in Lemma 2.1 and then discuss the implementation
of the access primitives (i)–(iii) needed for SplitReduce as presented at the start of
section 3. We assume that the input convex body K is presented as the intersection
of a set H of n halfspaces in Rd. Throughout, let Q denote an arbitrary quadtree cell.

Let t denote the query-time parameter in SplitReduce. As observed in section
3, under our assumption that t ≥ 1, steps 1 and 2 are not needed, since we can
rely entirely on step 3, and therefore access primitives (i) and (ii) are not needed.2

The remainder of this section will be focused on preconditioning (section 7.1) and
the implementation of access primitive (iii), which locally approximates K within Q
(section 7.2).

7.1. Preconditioning. Recall that we assume that K is a (full-dimensional)
convex polytope in Rd that is presented as the intersection of a set of n closed half-
spaces. Also recall that Q0 is the axis-aligned hypercube of unit diameter that is
centered at the origin. Our objective is to precondition K by computing an affine
transformation that both fattens K and maps it to lie within Q0. Q0 has a side
length of 1/

√
d, and therefore it contains a ball of radius 1/2

√
d centered at the ori-

gin. Let B0 denote this ball, and let r0 denote its radius. For 0 < γ ≤ 1, let γB0
denote the concentric ball of radius γ r0 = γ/2

√
d. We say that a polytope is in

γ-canonical position if it is nested between γB0 and B0 (see Figure 11). Clearly, a
polytope that is in canonical position is contained within Q0 and is γ-fat. The follow-
ing lemma shows that K can be efficiently mapped into this form, and furthermore
an absolute approximation to the transformed body can be easily mapped to a rela-
tive approximation of K. (Lemma 2.1 follows as an immediate consequence of this.)
Such fattening operations are commonplace in geometric approximation algorithms
(see, e.g., [1, 23, 39, 14]), and we employ the standard approach based on minimum
enclosing volumes, the John ellipsoid in particular.

2If we wished to we could implement access primitive (i) in linear time by linear programming.
Also, by testing the membership of each of Q’s vertices in K, we could implement a stronger version
of access primitive (ii), namely, that of determining whether Q ⊆ K (as opposed to K ⊕ ε).
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γr0 = γ/2
√
d

r0 = 1/2
√
d

Q0 B0
γB0

Fig. 11. A polytope in γ-canonical position.

Lemma 7.1. Let K be a convex polytope in Rd defined as the intersection of a set
H of n halfspaces, and let 0 < ε ≤ 1. There is an algorithm that, given H and ε,
in O(n) time computes an affine transformation T that maps K into (1/d)-canonical
position, such that if P is an absolute ε/(d

√
d)-approximation of T (K), then T−1(P )

is a relative ε-approximation of K.

Proof. Chazelle and Matoušek [26] show that in any fixed dimension, there exists
an O(n) time algorithm that, given a convex polytope K presented as the intersection
of n halfspaces, computes an ellipsoid E of maximum volume contained within K,
also known as the John ellipsoid [12]. (At the expense of an increase in the constant
factors, we can apply the simpler construction by Barequet and Har-Peled [14].) It
is well known from John’s theorem (see, e.g., [12]) that K is contained within a
uniform scaling of E by a factor of d. It follows from basic linear algebra that the
transformation T that maps E to a Euclidean ball 1

dB0 achieves the desired result.
(Details can be found in [8].)

In order to make subsequent processing more efficient, we adapt a standard coreset
construction to reduce the number of halfspaces to a function depending only on ε
and d. The process will involve some further scaling, which will slightly modify the
parameters.

Lemma 7.2. Let K be a convex polytope in Rd defined as the intersection of a set
H of n halfspaces, and let 0 < ε ≤ 1. There is an algorithm that, given H and ε, in
O(n + 1/εd−1) time computes an affine transformation T ′ and a subset H′ ⊆ H of
size O(1/ε(d−1)/2) such that

(i) applying T ′ to the intersection of H′ results in a convex polytope K ′ that is
in (1/2d)-canonical position;

(ii) furthermore, if P is an absolute ε/(4d
√
d)-approximation of K ′, then T ′−1(P )

is a relative ε-approximation of K.

Proof. Given H, we begin by computing the transformation T of Lemma 7.1 in
O(n) time. Let T (K) denote the resulting polytope, which is in (1/d)-canonical posi-
tion (see Figure 12(a)). Given a set S of points Rd, the extent measure associates each
unit vector u ∈ Rd with the minimum distance between two hyperplanes orthogonal
to u that contain S between them. More formally, define wu(S) = maxp,q∈S〈p− q, u〉
(recalling that 〈·, ·〉 denotes inner product). A subset S′ ⊆ S is said to be an ε-coreset
for the extent measure if for all unit vectors u, wu(S′) ≥ (1 − ε)wu(S). Agarwal,
Har-Peled, and Varadarajan [1] showed that, given a set of n points in Rd, it is pos-
sible to construct an ε-coreset for the extent measure of size O(1/ε(d−1)/2). Chan
presented an algorithm to compute such a coreset in O(n+ (1/ε)d−1) time [23].

In order to apply the coreset construction, we first employ the polar dual trans-
formation (recall section 2.3) to T (K), resulting in an n-element point set S of size n
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(b)(a) (c) (d)

1
2d
√

d
1

2
√

d

2
√

d

2d
√

d

polar

T (K) conv(S)

K ′
coreset polar

p′

p

wu(S′)

u

wu(S)

hp

hp′

1/wu(S)

1/wu(S′)

conv(S′)

Fig. 12. Proof of Lemma 7.2. (Not drawn to scale.)

such that conv(S) = polar(T (K)) (see Figure 12(b)). It is easy to verify that conv(S)
is nested between an inner ball of radius 2

√
d and an outer ball of radius 2d

√
d. Let

ε′ = ε/4d2. We then apply Chan’s algorithm to compute an ε′-coreset S′ ⊆ S in time
O(n + (1/ε′)d−1) = O(n + (1/ε)d−1) (see Figure 12(c)). Let H′ be the subset of H
that results by taking the polar duals of the points of S′, and let K ′ be the convex
body that results from intersecting these halfspaces (see Figure 12(d)).

Clearly, T (K) ⊆ K ′ and |H′| = O(1/ε(d−1)/2). It follows from a straightforward
geometric argument that the Hausdorff distance between T (K) and K ′ is at most
ε/2d
√
d. (For details, see [8]). Therefore, if P is any absolute (ε/2d

√
d)-approximation

to K ′, then by the triangle inequality (applied to the Hausdorff distance) P is an
absolute (ε/2d

√
d) + (ε/2d

√
d) = ε/d

√
d approximation to T (K). By Lemma 7.1, P

is a relative ε-approximation of K. We are almost done, but the canonical-position
condition fails, because K ′ need not lie within B0 of radius r0 = 1/2

√
d (even though

T (K) does). Since the Hausdorff distance between K ′ and T (K) is at most ε/2d
√
d ≤

1/2
√
d = r0, K ′ lies within 2B0. The simple fix is to apply a uniform scaling of space

by a factor of 1/2 combined with a suitable constant-factor adjustment of ε. The
desired conclusion follows as a direct consequence of canonical position.

7.2. Efficient local approximations. Next, we consider the implementation
of access primitive (iii), which given a convex body K in γ-canonical position, a
quadtree cell Q, and query-time t determines whether there exist t halfspaces whose
intersection ε-approximates K within Q. The space and query times stated in Theo-
rem 1.2 are based on the assumption that the number of bounding halfspaces of this
local approximating polytope is within a constant factor of optimal. However, we
know of no efficient algorithm that can achieve this. In this section we show how to
efficiently implement step 3 of SplitReduce approximately in the sense that the num-
ber of halfspaces in the approximation exceeds the optimum (for a slightly smaller
approximation parameter) by a factor of O(log 1

ε ). As shown in Lemma 3.2, this will
lead to an increase in the space and query times stated in Theorem 1.2 by a factor of
only O(log 1

ε ).
A natural approach would be to adapt Clarkson’s algorithm for polytope approxi-

mation [27]. There are a few messy technical issues involved with such an adaptation.
(For example, Clarkson’s algorithm applies to the convex hull of a set of points, rather
than the intersection of halfspaces.) Since we do not require the strong approxima-
tion bounds provided by Clarkson’s algorithm, we will instead present a simple direct
solution based on a reduction to the set-cover problem. Our approach is to construct
a set system where the point set consists of a dense set of points of spacing Θ(ε) that
covers the portion of Q that is external to K ⊕ c′ ε for a suitable constant c′ < 1.
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APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 27

We associate each bounding halfspace of K with the set of grid points that lie outside
of this halfspace. We will show that the halfspaces associated with a minimum set
cover for this system produce the desired local approximation. We use the greedy set
cover heuristic to construct this cover.

Recall that K ⊕ r denotes the set of points that lie within Euclidean distance r
of K. In order to avoid the complexities of determining whether a point lies outside of
K ⊕ c′ε, it will suffice for our purposes to perform the simpler test of whether a point
lies outside a scaled copy of K. The following lemma follows from a straightforward
geometric argument (see [8] for details).

Lemma 7.3. For 0 < γ ≤ 1 and 0 < ε ≤ 1, let K be a polytope in Rd that is in
γ-canonical position, and let K+ = (1 + 2

√
dε)K. Then

K ⊕ γε ⊆ K+ ⊆ K ⊕ ε.

While access primitive (iii) does not place any restrictions on the halfspaces used
when computing an ε-approximation to K within Q, when the query point q lies
outside of K, it may be useful to add further restrictions. In particular, when the
query point lies outside of K, it is desirable to obtain a witness to nonmembership
in the form of a bounding halfspace of K that does not contain q. (This will be
exploited in section 9 in the reduction of approximate nearest neighbor searching
to approximate polytope membership. The witness hyperplane is used to identify
the approximate nearest neighbor.) To achieve this, we would like to use bounding
halfspaces from the original polytope in our approximation. By a simple application
of Carathéodory’s theorem, we can show that we sacrifice only a constant factor by
adding this restriction. The following is a straightforward generalization of Lemma 3.1
from Mitchell and Suri [45]. (See [8] for details.)

Lemma 7.4. Let K be a convex polytope in Rd defined as the intersection of a set
H of halfspaces, and let Q ⊆ Q0 be a quadtree cell. If there exists an ε-approximation
of K within Q bounded by m halfspaces, then there exists a subset of H of size at most
dm that ε-approximates K within Q.

We are now in a position to present our set-cover-based local approximation. This
is a bicriteria approximation since it is suboptimal with respect to both the number
of bounding halfspaces and the approximation parameter.

Lemma 7.5. For 0 < γ ≤ 1 and 0 < ε ≤ 1, let K be a polytope in Rd in γ-
canonical position that is given as the intersection of a set H of n halfspaces. Let
Q ⊆ Q0 be a quadtree cell. In O(n/εd) time, it is possible to compute a subset
H′ ⊆ H such that

(i) the intersection of the halfspaces of H′ is an ε-approximation of K within Q,
(ii) if m denotes the minimum number of halfspaces needed to (γε/2)-approximate

K within Q, then |H′| is O(m log 1
ε ).

Proof. First, we may assume without loss of generality that ε ≤ 2/
√
d. Otherwise,

setting ε = 2/
√
d will certainly satisfy (i) and will only affect the constant factors in

the asymptotic bounds of claim (ii) and the construction time. Define β =
√
dε/2.

By the above assumption, we have

(1 + β)2 =
(

1 +
√
dε+

dε2

4

)
≤ 1 +

3
2

√
dε.
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Q

K

(a) (c)(b)

K ⊕ γε
4

K+
K++

Q
h

R(h)

K ⊕ 3ε
4 h+

q

h+

h
q′

K
K+
K++

Fig. 13. Proof of Lemma 7.5.

Let K+ = (1 +β)K and let K++ = (1 +β)K+ = (1 +β)2K. By applying Lemma 7.3
but with ε taking on the values ε/4 and 3ε/4, respectively, we have

K ⊕ γε

4
⊆ K+ ⊆ K++ ⊆ K ⊕ 3ε

4
(7)

(see Figure 13(a)). Let δ = γε/4 and let G denote the vertices of a hypercube grid
of diameter δ. Let R be the set of grid points that lie within Q but outside of K++,
that is, R = G ∩ (Q \K++). Since Q ⊆ Q0, the resulting set is of size O(1/εd), and
hence it can be computed in time O(1/εd) · |H| = O(n/εd), by testing each grid point
against each halfspace of H. Because γ ≤ 1, we have δ ≤ ε/4.

Next, we define a set system to model the approximation process. For each
h ∈ H we define a subset R(h) ⊆ R as follows. First, let h+ = (1 + β)h denote the
corresponding bounding halfspace of the scaled body K+ (see Figure 13(b)). Define
R(h) to be the subset of points of R that lie outside of h+. Consider a set system
consisting of the points of R and the sets R(h) for all h ∈ H. Since every point of
R lies outside of K++, and hence outside of K+, together these sets cover R. The
resulting collection of sets has total cardinality O(n/εd).

Consider any set cover C of the resulting set system. Let P (C) denote the polyhe-
dron that results by intersecting the halfspaces h whose associated set R(h) is included
in this cover. (Note that the sets R(h) are based on the halfspaces bounding the scaled
body K+, while P (C) is based on the halfspaces bounding the original body K.) We
assert that P (C) ε-approximates K within Q. It suffices to show that for any point
q ∈ Q \ (K ⊕ ε), q is not in P (C). First, observe that for such a point q, all the
vertices of the grid cell in which it lies are within distance δ of q. Therefore, by the
triangle inequality, each such vertex is at distance at least ε−δ ≥ 3ε/4 from K. Since
by (7), K++ ⊆ K ⊕ 3ε/4, these vertices are all exterior to K++, which implies that
they are all members of R. Let q′ be any of these vertices. Since C is a cover, there
exists a halfspace h ∈ H such that R(h) is in the cover and contains this point. This
implies that q′ lies outside the associated halfspace h+ (see Figure 13(c)). Because K
is in γ-canonical position, the minimum distance between h’s bounding hyperplane
and the origin is at least γ/2

√
d. Therefore the distance between any point in h to

any point exterior to h+ is at least

γ

2
√
d

((1 + β)− 1) =
γ

2
√
d
·
√
dε

2
=

γε

4
= δ.

It follows by the triangle inequality that q is exterior to h, and therefore it lies outside
of P (C), as desired.
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Let C ′ denote a set cover that results by running the greedy heuristic [29] on the
aforementioned set system. By standard results on the greedy heuristic, the size of
the resulting cover exceeds that of an optimal cover by a factor of at most ln |R| =
O(log 1

ε ). C ′ can be computed in time that is proportional to the total cardinality
of the sets of the set system, which is O(n/εd). Let H′ denote the associated set of
halfspaces, and let P (C ′) denote the intersection of these halfspaces. By the above
remarks, P (C ′) is an ε-approximation to K within Q, which establishes claim (i).

To establish (ii), consider a (γε/4)-approximation of K within Q that is bounded
by the minimum number m of halfspaces. By Lemma 7.4 there exists such an ap-
proximation that uses only the bounding halfspaces of K, such that the number of
halfspaces is larger by a factor of at most d. Let P+ denote this approximation, and
let H+ ⊆ H denote its bounding halfspaces. By (7), we have P+ ⊆ K ⊕ γε/4 ⊆ K+.
Let P++ = (1 + β)P+. Clearly, P++ ⊆ (1 + β)K+ = K++. Therefore, every point
of R lies outside of P++. It follows that the sets R(h) associated with the halfspaces
h that bound P+ form a set cover of R within our system. Letting C++ denote this
cover, we have |C ′| ≤ O(log 1

ε ) · |C++| ≤ O(log 1
ε ) · dm = O(m log 1

ε ), as desired.

We can now present the main result of this section, which summarizes the pre-
processing time.

Lemma 7.6. Given a full-dimensional convex polytope K in Rd defined as the
intersection of a set of n halfspaces, approximation parameter 0 < ε ≤ 1, and query
time parameter t ≥ 1, there is an algorithm that runs in time O(n+ 1/εcp d) for some
constant cp (which does not depend on d) that constructs a data structure satisfying
Theorem 1.2 but with an additional factor of O(log 1

ε ) in both the space and query
times.

Proof. Given K’s bounding halfspaces, we apply Lemma 7.2. In O(n + 1/εd−1)
time we obtain a polytope K ′, such that K ′ is in γ-canonical position for γ = 1/2d. K ′

is bounded by a subset H′ of halfspaces of size n′ = O(1/ε(d−1)/2), and the problem
of computing a relative ε-approximation of K reduces to the problem of computing
an absolute ε′-approximation of K ′, where ε′ = ε/4d

√
d.

Ideally, we would like to invoke SplitReduce on K ′ using ε′ as the approximation
parameter and t as the query time parameter. Since we do not know how to determine
minimum-sized convex approximations efficiently, we will need to relax our expecta-
tions. For any quadtree cell Q generated by SplitReduce, we apply Lemma 7.5 on
the set H′ of halfspaces. By claim (i) of this lemma, after O(n′/(ε′)d) = O(1/ε3d/2)
time, a subset H′′ ⊆ H′ can be computed that is an ε′-approximation of K ′ within
Q. Irrespective of the choice of the query time, the maximum number of quadtree
cells generated by SplitReduce is O(1/εd), and therefore (after preconditioning) the
overall running time of SplitReduce is O(1/ε5d/2). Combined with the O(n + 1/εd)
time for preconditioning, the algorithm’s overall running time is O(n+1/εcp d), where
cp = 5/2.

Let ε′′ = γε′/2 = γε/8d
√
d. By Lemma 7.5(ii) the number of halfspaces in H′′

is within a factor of ρ = O(log 1
ε′ ) = O(log 1

ε ) of the size of the minimum-sized ε′′-
approximation of K ′ within Q. Since ε′′ = βε′ for a constant β, Lemma 3.2 implies
that the conclusions of Theorem 1.2 hold but with an additional factor of ρ = O(log 1

ε )
in both the space and query times.

8. Lower bound. In this section, we establish lower bounds on the space-time
trade-offs obtained by SplitReduce for polytope membership. In particular, we will
prove Theorem 1.3. Our approach is similar to the lower bound proof of [10]. (Note
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that this is a lower bound on the performance of SplitReduce, not on the problem
complexity. It applies to the stronger existential version of the algorithm.) It is
based on analyzing the performance of the algorithm on a particular convex body,
a generalized hypercylinder that is curved in k + 1 dimensions and flat in d − 1 − k
dimensions. We select the value of k that produces the best lower bound on the
storage as a function of t, ε, and d. Throughout, we use the term ε-approximation in
the absolute sense, as defined in section 2.1.

As mentioned earlier, it is well known that Ω(1/ε(d−1)/2) facets are required to
ε-approximate a Euclidean ball of unit radius (see, e.g., [18]), and this holds for
any polytope that is sufficiently close to a ball in terms of Hausdorff distance. The
following utility lemma generalizes this observation to different diameters. The proof
is a straightforward exercise in geometry. (Details can be found in [8].)

Lemma 8.1. Let ε and ∆ be real parameters, where 0 < ε ≤ ∆/4. There exists
a constant cb and a polytope P in Rd of diameter at most ∆ such that any outer
ε-approximation of P requires at least cb(∆/ε)(d−1)/2 facets.

Intuitively, in order to produce a polytope that is hard to approximate, it should
have high curvature. If the curvature is high in all dimensions, however, the polytope
will have a small surface area, and this will make it easier to approximate. Our
approach is to consider polytopes based on generalized cylinders, which have constant
curvature in some dimensions but are flat in others. Our next lemma introduces such a
cylindrical polytope where the number of curved dimensions has been carefully chosen
to maximize the space needed by our algorithm for a given query time. Theorem 1.3
is an immediate consequence.

Lemma 8.2. There exists a polytope P in Rd such that for all sufficiently small
positive ε (depending on d and α) and t = 1/ε(d−1)/α, the output of SplitReduce(K,Q0)
on P has total space

Ω
(

1/ε(d−1)
(

1− 2
√

2α−3
α

)
−1
)
.

Proof. To start, as a function of α, we wish to compute an integer dimension k
in order to apply Lemma 8.1. Define reals δ =

√
α/2/(d− 1), κ = (d− 1)

√
2/α, and

κ′ = κ(1 + δ). We observe first that

κ′ − κ = δ(d− 1)
√

2/α = 1.

Let k = dκe, implying that κ ≤ k ≤ κ′. (Although we do not include the derivation
here, κ has been chosen to produce the best lower bound, but since it is not necessarily
an integer, k is obtained by rounding to a nearby integer.) Since α ≥ 4 and d ≥ 2, we
have 1 ≤ k ≤ d− 1.

Let cb denote the constant of Lemma 8.1, and let ∆ = ε((2d + 1)t/cb)2/k. By our
assumptions about d and α, we have t = 1/εΘ(1) and ∆ = ε · tΘ(1). It follows that
for all sufficiently small ε, ∆/4 ≥ ε. Let h denote the linear subspace spanned by the
first k + 1 coordinate axes. We apply Lemma 8.1 in Rk+1 for this value of ∆. The
resulting polytope P (lying in h) has the property that the number of facets of any
ε-approximation is at least

cb

(
∆
ε

)k/2
= cb

ε
(

(2d+1)t
cb

)2/k
ε


k/2

= (2d + 1)t.
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∆

≥ 2∆
√

d

(b)

∆

h

C

(a)

Pq
q

1√
d

Fig. 14. Lemma 8.2 for d = 3 and k = 2.

We can bound P ’s diameter by observing that for all sufficiently small ε

diam(P ) ≤ ∆ = ε

(
(2d + 1)t

cb

)2/k
≤ ε

(
2d + 1

cb · ε(d−1)/α

)2/κ
= ε

(
2d + 1

cb · ε(d−1)/α

)√2α/(d−1)

.

(Here we made use of the fact that for all sufficiently small ε, the quantity raised to
power of 2/k is greater than 1.) Letting c′b = ((2d + 1)/cb)

√
2α/(d−1), we obtain

diam(P ) ≤ c′bε

(
1

ε(d−1)/α

)√2α/(d−1)

= c′bε
1−
√

2/α.

Since α ≥ 4, for all sufficiently small ε, we have diam(P ) ≤ 1/
√
d. Therefore, P can

be enclosed within Q
(k+1)
0 .

Returning to Rd, consider an infinite polyhedral hypercylinder whose “axis” is
the (d − 1 − k)-dimensional orthogonal complement of h and whose “cross section”
(i.e., intersection with any (k+ 1)-dimensional hyperplane parallel to h) is P . Define
the polytope C to be the truncated cylinder obtained by intersecting the infinite
hypercylinder with hypercube Q(d)

0 (see Figure 14(a)). Let T denote the output of
SplitReduce(K,Q(d)

0 ) for C, ε, and t. We will show that T ’s total space satisfies the
bound given in the lemma’s statement. To do this, let Σ denote any set of points
placed on C’s axis such that the distance between each pair of points is at least
2∆
√
d. (In the degenerate case where k = d − 1 the axis is 0-dimensional and Σ

degenerates to a single point.) By a simple packing argument, there exists such a set
having Ω(1/∆d−1−k) points.

For any q ∈ Σ, let Pq denote the cross-section of C passing through q (see
Figure 14(b)). Consider the set of leaf cells of T that intersect Pq. By applying
Lemma 8.1 to the (k + 1)-dimensional hyperplane on which P lies, it follows that
these cells together must contain at least (2d + 1)t halfspaces. We count the contri-
butions of these cells by classifying them into two types. We say that a leaf cell of T
is large if its side length is at least ∆, and otherwise it is small. By a simple packing
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argument, the number of large leaf cells intersecting Pq is at most 2d. Since each leaf
cell contains at most t halfspaces, the large leaf cells can together contain at most 2dt
halfspaces.

Therefore, the small leaf cells intersecting Pq together contain at least (2d +
1)t − 2dt = t halfspaces. Because the points of Σ are separated from each other by
distance at least 2∆

√
d, which is strictly larger than the diameter of any small leaf

cell, each small leaf cell can intersect Pq for at most one q ∈ Σ. Therefore, the total
space contribution of all the small leaf cells for all points of Σ is at least t · |Σ|. Let
c′′b = (cb/(2d + 1))2(d−1−k)/k. T ’s total space can be asymptotically bounded from
below as

t

∆d−1−k =
t(

ε
(

(2d+1)t
cb

)2/k
)d−1−k =

c′′b · t(
ε · t2/k

)d−1−k =
c′′b · t1−2(d−1−k)/k

εd−1−k .

Clearly, c′′b = Θ(1). Recall that t = 1/ε(d−1)/α. Then, T ’s total space is asymptotically
bounded from below as(

1
ε

)(d−1)−k+ d−1
α (1− 2(d−1−k)

k )
=
(

1
ε

)(d−1)−k+ d−1
α (3− 2(d−1)

k )
.(8)

Let E(α) denote this exponent. In order to complete the proof, we provide a lower
bound on E(α). We use the fact that κ ≤ k ≤ κ′, apply the definitions of κ, κ′, and
δ, and apply straightforward manipulations to obtain

E(α) ≥ (d− 1)− κ′ + d− 1
α

(
3− 2(d− 1)

κ

)
= (d− 1)

(
1− 2

√
2α− 3
α

)
− 1.

Substituting this value for the exponent in (8) completes the proof.

9. Approximate nearest neighbor searching. In this section, we present
a reduction from approximate nearest neighbor searching to approximate polytope
membership, which will allow us to prove Theorem 1.4. Our reduction will involve the
following additional assumptions regarding the implementation of SplitReduce. First
(as in section 7), we assume that K is presented as the intersection of n halfspaces.
Second, we assume that a leaf node is labeled as “inside” only if it lies entirely within
K (as opposed to lying within K ⊕ ε as described in SplitReduce). Third, we assume
that leaf cells that store halfspaces use only bounding halfspaces of K.

Clearly, these assumptions do not affect the data structure’s correctness. We
assert that they do not affect the data structure’s asymptotic query time or space
bounds. Regarding the second assumption, observe that for any cell Q that lies within
K⊕ε, K can be ε-approximated within Q using a single halfspace (any halfspace that
contains Q suffices). Regarding the third assumption, recall that Lemma 7.4 shows
that we may assume that the approximating halfspaces for each node are drawn from
the input halfspaces at the expense of a constant factor increase in the query time.

The reduction from approximate nearest neighbor searching to approximate poly-
tope membership is based on the AVD construction from [10]. The AVD employs a
height balanced variant of a quadtree, a balanced box decomposition (BBD) tree [11]
to be precise. Each cell of a BBD tree corresponds to the set theoretic difference of
two quadtree cells, an outer box and an optional inner box. Each leaf cell of the tree
stores a set of representative points with the property that for any query point q lying
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∈ RQ

∈ S

Q

cBQ

BQ

(a) (b)

h(p)

EQ

pqr

xd+1

r↑

Ψ

p↑

q↑

q[p]

Fig. 15. Approximate nearest neighbor searching: (a) Lemma 9.1 (black points are members of
RQ), (b) the lifting transformation. (Note that the figure is not drawn to scale, and the paraboloid
in (b) has been translated to aid legibility.)

within this cell, at least one of these representatives is an ε-nearest neighbor of q. A
query is answered by locating the leaf cell that contains the query point and then de-
termining the nearest representative from this cell (by brute force). The AVD’s space
is dominated by the total number of representatives over all the leaf cells. The query
time is the height of the tree plus the number of representatives in the leaf cell. A data
structure for nearest neighbor searching is said to be in the AVD model if it has this
general form, that is, a covering of the query region by hyperrectangles of bounded
aspect ratio, each of which is associated with a set of representative points [10]. Lower
bounds on the performance of any data structure in the AVD model were given in [10].

The reader need not be familiar with the details of the AVD data structure.
The next lemma encapsulates the important technical information needed for our
reduction. It follows easily from the proofs of Lemmas 6.1 and 8.1 in [10]. Given
a cell Q in a BBD tree, let BQ denote the ball of radius 2 · diam(Q) whose center
coincides with the center of Q’s outer box (see Figure 15(a)). Given a Euclidean ball
B of radius r and positive c, let cB denote the ball concentric with B of radius cr.

Lemma 9.1. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in
Rd. It is possible to construct a BBD tree T with O(n · log 1

ε ) nodes, where each leaf
cell Q stores a subset RQ ⊂ X satisfying the following properties:

(i) For any point q in Q, one of the points in RQ is an ε-approximate nearest
neighbor of q.

(ii) At most one point of RQ is contained in the ball BQ, and the remaining points
of RQ are contained in cqBQ \ BQ for some constant cq (which depends on
the dimension).

(iii) The total number of representative points over all the leaf cells of T is O(n ·
log 1

ε ).
Moreover, it is possible to compute the tree T and the sets RQ for all the leaf cells

in total time O(n · log n · log 1
ε ), and the cell that contains a query point can be located

in time O(log n+ log log 1
ε ).

In the AVD data structure of [10] the closest representative point to a query point
is determined by brute-force enumeration of the elements of RQ. We consider whether
it is possible search them more efficiently by reduction to polytope approximation.
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The following lemma explains how to connect Lemma 9.1 with approximate polytope
membership queries. Our construction uses the well-known lifting transformation [3,
34]. Let (x1, . . . , xd+1) denote the coordinates of Rd+1, and let us think of the (d+1)st
coordinate axis as being directed vertically upward. Let Ψ denote the paraboloid
xd+1 =

∑d
i=1 x

2
i . Given a point p ∈ Rd, let p↑ denote the vertical projection of p onto

Ψ (see Figure 15(b)), and let h(p) denote the hyperplane tangent to Ψ at p↑. That
is, the points of h(p) satisfy xd+1 =

∑d
i=1 2pixi − ‖p‖2. Given q ∈ Rd, let q[p] denote

the point on h(p) hit by a vertical ray shot downward from q↑. A straightforward
consequence of the definition of Ψ is that the squared distance between q and p in Rd
is equal to the length of this vertical segment, that is, ‖qp‖2 = ‖q↑q[p]‖.

This suggests the following approach to computing the closest representative point
through vertical ray shooting. Consider the (unbounded) convex polyhedron that
results by taking the upper envelope of the hyperplanes h(p) associated with the
lifted representatives. Given the query point q ∈ Rd, a ray shot vertically downward
from q↑ hits some facet of this polyhedron. It follows from the above remarks that the
representative associated with this hyperplane is the closest to q. We can simulate ray
shooting by applying polytope membership queries in concert with binary search. Of
course, some care will be needed to map this problem into our context, which assumes
a bounded polytope and approximation.

Lemma 9.2. Let 0 < ε ≤ 1/2 be a real parameter and consider a quadtree cell Q
and a set of representative points RQ as in Lemma 9.1. Given a data structure for
ε-approximate polytope membership in d-dimensional space with query time td(ε) and
space sd(ε), it is possible to preprocess RQ into an approximate nearest neighbor data
structure for query points in Q with query time O(td+1(ε)·log 1

ε ) and space O(sd+1(ε)).

Proof. Since at most one point of RQ is contained in BQ, the corresponding point
may be inspected separately without increasing the complexity bounds. Therefore,
we may assume that all points of RQ are contained in cqBQ \BQ.

Although we assume that the errors in polytope membership are absolute (because
of standardization), errors in approximate nearest neighbor searching are relative.
That is, a point r is an ε-approximate nearest neighbor of q if ‖qr‖ ≤ (1 + ε)‖qp‖,
where p is q’s true nearest neighbor. Because errors are relative, we may assume
that space has been translated and uniformly scaled so that Q is mapped to Q(d)

0 , the
hypercube of unit diameter centered at the origin in Rd. As a result, BQ is mapped to
a ball of radius 2. It follows that the distance from any point of Q to any point of RQ
is greater than 1. Therefore, an absolute error of ε implies a relative error of at most ε.

In order to reduce nearest neighbor searching among the points of RQ to polytope
membership, let EQ denote the upper envelope, that is, the intersection of the upper
halfspaces, of the hyperplanes h(p), for all p ∈ RQ (the shaded region in Figure 15(b)).
As mentioned above, the facet of EQ hit by shooting a ray vertically downward from
q↑ corresponds to the closest point of RQ to q.

Since the upper envelope is unbounded, we first compute a bounded convex poly-
tope on which to perform approximate membership queries. Because the query points
lie in Q, we are only interested in the portion of EQ that projects vertically onto Q.
Given that the distance of any point p ∈ RQ to the origin is at most 2cq = O(1), it fol-
lows that the portion of EQ of interest fits within an axis-aligned (d+ 1)-dimensional
hypercube of constant diameter that is centered at the origin. Let Q′ denote such a
hypercube, let KQ = EQ∩Q′, and let ε′ = ε/6cq. We invoke SplitReduce to construct
an ε′-approximate membership data structure for KQ. (More formally, we first scale
Q′ into standard form, and we scale ε′ by the same factor. We then apply SplitReduce
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pqr

xd+1

r↑ p↑

q↑

q[r]q+

q−

ε′

q[p]

Fig. 16. Proof of Lemma 9.2. (Not drawn to scale.)

with the scaled value of ε′. SinceQ′ is of constant diameter, the scale factor will also be
a constant, and therefore only the constant factors in the analysis will be affected. We
then apply an inverse scaling to obtain the desired ε′-approximating polytope for KQ.)

We simulate the ray shooting process by a binary search to locate the contact
point approximately. Consider the vertical segment formed by intersecting Q′ with
the vertical line passing through q↑. The upper endpoint of this segment is clearly
inside KQ and its lower endpoint is outside. We repeatedly split the segment at its
midpoint, perform an approximate polytope membership query, and retain the subseg-
ment whose upper endpoint is (approximately) inside KQ and whose lower endpoint
is (approximately) outside. We terminate the search when the length of the segment
falls below ε′. Since Q′ is of constant diameter, the search terminates after O(log 1

ε )
membership queries. Let us denote the endpoints of this final segment as q+ (upper)
and q− (lower).

Recall our assumption that cells are labeled by SplitReduce as “inside” or “out-
side” only if they lie entirely inside or outside KQ, respectively. It follows that as
we traverse the cells that intersect the segment q+q− from top to bottom, we cannot
transition directly from an “inside” cell to an “outside” cell. Therefore, at least one
of these cells must contain a set of representative hyperplanes. Let h(r) denote the
hyperplane having the topmost intersection with the vertical ray. We return r as the
approximate nearest neighbor (see Figure 16). It is easy to see that this algorithm
satisfies the desired time and space bounds.

All that remains is to establish correctness, by showing that r is indeed an
ε-approximate nearest neighbor of q. In order to do this, let p be q’s true nearest
neighbor in RQ. Due to the nature of the binary search, q+ lies within distance ε′ of
KQ. (Note that it might lie within KQ.) Thus, the distance from q+ to the upper
halfspace bounded by h(p) is at most ε′. By the triangle inequality, the distance from
q− to this halfspace is at most ε′ + ε′ = 2ε′. Since p is q’s true nearest neighbor, q[p]
lies on ∂KQ, and so the hyperplane h(p) separates q− from KQ. This implies that
the distance from q− to h(p) is also not greater than 2ε′.

We claim that the vertical distance from q− to q[p] is at most ε. To see why, recall
that p lies within a ball of radius 2cq centered at the origin. This implies that h(p) can-
not be too steep, that is, the angle formed between h(p)’s normal vector and the verti-
cal axis can be bounded away from π/2 by a constant. By basic linear algebra, it can
be shown that the ratio of the vertical and orthogonal distances of any point to h(p) is
bounded above by

√
4c2q+1<3cq. Therefore, we have ‖q[p]q

−‖ ≤ 3cq (2ε′) = ε, as desired.
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Because r is the witness produced by the algorithm, h(r) separates q− from
KQ, which implies that q[r] lies above q−. Thus, we have ‖q[p]q[r]‖ ≤ ‖q[p]q

−‖ ≤ ε.
Therefore,

‖qr‖2 = ‖q↑q[r]‖ = ‖q↑q[p]‖+ ‖q[p]q[r]‖ ≤ ‖q↑q[p]‖+ ε.

By the lifting transformation, we have ‖q↑q[p]‖ = ‖qp‖2, and combining this with the
fact that ‖qp‖ ≥ 1, we have

‖qr‖2 ≤ ‖qp‖2 + ε ≤ ‖qp‖2 + ‖qp‖2ε = ‖qp‖2(1 + ε) ≤ (‖qp‖(1 + ε))2
.

Therefore, r is an ε-approximate nearest neighbor of p, which completes the
proof.

The above lemma shows how to apply approximate polytope membership to ef-
ficiently answer approximate nearest neighbor queries within each cell of the AVD.
To obtain a complete data structure for approximate nearest neighbor searching we
apply this to every leaf cell of the AVD.

Lemma 9.3. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in
Rd. Given a data structure for approximate polytope membership in d-dimensional
space with query time at most td(ε) and storage sd(ε), it is possible to preprocess
X into an approximate nearest neighbor searching data structure with query time
O(log n+ td+1(ε) · log 1

ε ) and space

O

(
n log

1
ε

+ n
sd+1(ε)
td+1(ε)

)
.

Proof. Following Lemma 9.1, construct a BBD-tree T , and for each leaf cell Q
of T , construct the set of representative points RQ. For each leaf cell such that
|RQ| ≤ td+1(ε) · lg 1

ε , simply store the set RQ and answer the corresponding queries
by brute force. For the nodes with |RQ| > td+1(ε) · lg 1

ε , use the construction from
Lemma 9.2.

To answer an approximate nearest neighbor query we search the AVD of Lemma 9.1
to find the leaf cell containing the query point and then apply Lemma 9.2. Thus, the
query time is

O

(
log n+ log log

1
ε

+ td+1(ε) · log
1
ε

)
= O

(
log n+ td+1(ε) · log

1
ε

)
.

To bound the total space, observe from Lemma 9.1(iii) that the total number of
representative points is O(n log 1

ε ). Thus, by a simple counting argument, the number
of leaf cells with more than td+1(ε) · lg 1

ε representatives is O(n/td+1(ε)). Therefore,
the total space of the data structure is O(n log 1

ε + n(sd+1(ε)/td+1(ε))).

Because of its reliance on binary search, the generic reduction given in Lemmas 9.2
and 9.3 is not formally in the AVD model. Recall that the AVD model is important
because lower bounds have been established in this model [10], and thus these lower
bounds do not apply here. However, by sacrificing generality and a factor of O(log 1

ε )
in the space bound, we can exploit the properties of SplitReduce to obtain a data
structure that is in the AVD model.

Lemma 9.4. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points
in Rd. Given a split-reduce data structure for approximate polytope membership in
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xd+1

Q′

CQ′

contribute to RQ′

TQ

∂KQ

T ′Q

TQ

T ′Q

xd+1

(a) (b)

Fig. 17. Producing an approximate nearest neighbor data structure in the AVD model.

d-dimensional space with query time at most td(ε) and storage sd(ε), it is possible to
preprocess X into an approximate nearest neighbor data structure in the AVD model
with query time O(log n+ td+1(ε) · log 1

ε ) and space

O

(
n

(
1 +

sd+1(ε)
td+1(ε)

)
log

1
ε

)
.

Proof. As in Lemma 9.3, construct a BBD-tree T , and for each leaf cell Q
of T , construct the set of representative points RQ. We may assume that |RQ| >
td+1(ε) · lg 1

ε , since otherwise we just use the points of RQ as the representatives.
In order to handle query points lying within Q, we apply Lemma 9.2, where queries
are answered using the tree produced by SplitReduce. Let TQ denote the resulting
tree. We exploit the fact that the SplitReduce data structure associates a collection
of hyperplanes with each leaf cell of TQ, and by the nature of our reduction, each of
these hyperplanes corresponds to a lifted point of RQ. These lifted points will play
the role of nearest neighbor representatives. Intuitively, our approach is to “undo”
the lifting transformation by projecting the leaf cells of TQ vertically from Rd+1 down
to Rd and then building a d-dimensional AVD structure based on this projection.

The projection of the cells of TQ onto Rd naturally defines a quadtree subdivi-
sion of Rd, which we denote by T ′Q (see Figure 17(a)). For each leaf cell Q′ of T ′Q,
let CQ′ denote the infinite vertical cylinder in Rd+1 whose cross section is Q′ (see
Figure 17(b)). Because Q′ is a leaf, any leaf cell of TQ that intersects this cylinder
projects onto a hypercube that contains Q′.

Recall the lifted polytope KQ of Lemma 9.2. For each leaf cell of TQ that contains
a point whose vertical distance from ∂KQ is at most ε, we create a representative point
corresponding to each of the hyperplanes that SplitReduce associates with this leaf
cell. We denote the resulting collection of representatives by RQ′ . These are the
only hyperplanes that are relevant to the binary search of Lemma 9.2, and therefore
one of them will provide the final witness in the binary search (the point r in the
proof of Lemma 9.2). This implies that RQ′ constitutes a valid representative set for
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38 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

ε-approximate nearest neighbor searching for any query point that lies in Q′. Thus,
the resulting data structure is a valid AVD structure.

In order to bound the query time we recall some of the observations made in the
proof of Lemma 9.2. Since KQ is contained within a hypercube of constant diameter
centered at the origin, the absolute slopes of the hyperplanes of the approximating
polytope are bounded above by some constant. Recall that the leaf cells of TQ that
contribute a point to RQ′ have side lengths at least as large as that of Q′. By the
same reasoning used in Lemma 3 of [11], the number of such quadtree leaf cells
that can intersect ∂KQ is bounded by a constant, which we denote by c`. (This
constant depends on the dimension d and the largest possible slope.) Therefore, the
total number of cells contributing a representative to RQ′ is at most c`. Since each
cell contributes at most td+1(ε) representatives, the total number of representatives
associated with any leaf cell of T ′Q is at most c` · td+1(ε) = O(td+1(ε)).

The bound on the total space is complicated by the fact that a large cell that
intersects ∂KQ may overlap the columns of many small leaf cells, and hence a large
cell’s representatives may be replicated many times. Let M denote the set of internal
nodes of TQ all of whose children are leaves. We encountered this set earlier in the
proof of Lemma 3.1. As we saw in that earlier lemma, because each node of M
was split by SplitReduce, it follows that each such cell requires more than td+1(ε)
halfspaces to approximate K(Q), and thus, the children of M together require at
least as many representatives. Therefore we have |M | · td+1(ε) ≤ sd+1(ε). Reasoning
as we did in Lemma 3.1, every internal node of TQ either is in M or is an ancestor
of a node in M . Thus, the number of internal nodes is at most |M | · height(TQ).
Since every internal node has 2d children, the total number of nodes in TQ is at most
2d · |M | · height(TQ). Clearly, the number of leaf cells of T ′Q can be no larger. As
we saw in the previous paragraph, each leaf cell of T ′Q is associated with at most
c` · td+1(ε) representatives. Since the tree is of height O(log 1

ε ), the total number of
representatives over all these cells is at most

(2d · |M | · height(TQ))(c` · td+1(ε)) = c` · 2d · height(TQ) · (|M | · td+1(ε))

≤
(
c` · 2d · log

1
ε

)
· sd+1(ε)

= O

(
sd+1(ε) · log

1
ε

)
.

By Lemma 9.1(iii), the total number of representatives in TQ is O(n log 1
ε ). By a

counting argument, the number of leaf cells with more than td+1(ε) · log 1
ε represen-

tatives is O(n/td+1(ε)). Therefore, the total space is

O

(
n log

1
ε

+
n

td+1(ε)
· sd+1(ε) · log

1
ε

)
= O

(
n

(
1 +

sd+1(ε)
td+1(ε)

)
log

1
ε

)
as desired.

By combining this with Theorem 1.2 (applying the more accurate space bounds
from Lemma 6.4) we obtain the main result of this section.

Lemma 9.5. Let 0 < ε ≤ 1 be a real parameter, α ≥ 1 be a real constant, and X
be a set of n points in Rd. There is a data structure in the AVD model for approximate
nearest neighbor searching that achieves
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Query time: O
(

log n+ (1/εd/2α) · log2 1
ε

)
,

Space: O
(
n ·max

(
log

1
ε
, 1/εd(

1
2−

1
2α )
))

for 1 ≤ α < 2, and

O

(
n/ε

d
(

1− blgαcα − 1
2blgαc

+ 1
2α

))
for α ≥ 2.

The constant factors in the space and query time depend only on d and α (not on
ε). At the expense of increasing the query time and space by a factor of O(log 1

ε ) it
is possible to construct the data structure in time O(n(log n+ 1/εcd) log 1

ε ) for some
constant c (that does not depend on d or α).

Proof. Given X and ε, we first observe that if 1/16 < ε ≤ 1, we may set ε = 1/16,
since this will only affect the constant factors in the asymptotic bounds. We consider
two cases based on the value of α.

If 1 ≤ α < 2, we will apply Theorem 1.2 with the values of d and α of the theorem
set to d′ = d + 1 and α′ = 4, respectively. The theorem states that there is a data
structure that achieves query time

O

((
log

1
ε

)
/ε

d′−1
α′

)
= O

(
(1/εd/4) · log

1
ε

)
= O

(
(1/εd/2α) · log

1
ε

)
(9)

and space

O

(
1/ε

(d′−1)
(

1− 2blgα′c−2
α′

))
= O

(
1/εd/2

)
.(10)

Letting td+1(ε) and sd+1(ε) denote the quantities of (9) and (10), respectively, we
apply Lemma 9.4 to obtain a data structure in the AVD model with query time
O(log n+ (1/εd/2α) · log2 1

ε ) and space

O

(
n

(
1 +

1/εd/2

(1/εd/2α) · log 1
ε

)
log

1
ε

)
= O

(
n ·max

(
log

1
ε
, 1/εd(

1
2−

1
2α )
))

,

as desired.
Otherwise, if α ≥ 2, we apply Theorem 1.2 (but using the more accurate space

bounds from Lemma 6.4) in dimension d′ = d + 1 and with trade-off parameter
α′ = 2α. (Observe that α′ ≥ 4, as required by Theorem 1.2 and Lemma 6.4.)
This yields an approximate polytope membership data structure with query time
td+1(ε) = O((1/εd/2α) · log 1

ε ) and space

sd+1(ε) = O

(
1/εd

(
1−2

(
blg(2α)c−2

2α + 1
2blg(2α)c

)))
= O

(
1/εd

(
1− blgαc−1

α − 1
2blgαc

))
.

By Lemma 9.4 this implies the existence of a data structure in the AVD model with
the desired query time of O(log n+ (1/εd/2α) · log2 1

ε ) and space

O

n
1 +

1/εd
(

1− blgαc−1
α − 1

2blgαc

)
(log 1

ε )/εd/2α

 log
1
ε

 .
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Since α ≥ 2, we may ignore the “1+” term in the inner parenthetical factor. After
some simplification we obtain the desired space bound of

O

(
n/ε

d
(

1− blgαcα − 1
2blgαc

+ 1
2α

))
.

The preprocessing involves first computing the AVD, which by Lemma 9.1 takes
O(n · log n · log 1

ε ) time. For each of the O(n log 1
ε ) leaf cells Q of the AVD, we

apply SplitReduce in dimension d + 1 to its associated set RQ of representatives.
By Lemma 7.6 this takes O(nQ + 1/εcp(d+1)) time, where nQ = |RQ|, and cp is a
constant that does not depend on d. Summing over all the leaf cells of the AVD and
recalling that the total number of representatives is O(n · log 1

ε ), it follows that the
total preprocessing time is on the order of

n · log n · log
1
ε

+
∑
Q

(
nQ + 1/εcp(d+1)) = n · log n · log

1
ε

+ n · log
1
ε
·
(

1
ε

)cp(d+1)

= n

(
log n+

(
1
ε

)cd)
log

1
ε
,

where c = cp(d + 1)/d, as desired. Because of the reliance on approximate set cover
in the processing of Lemma 7.6, the query time and space are larger by a factor of
O(log 1

ε ).

Note that the above proof uses the AVD-based reduction given in Lemma 9.4. If
instead we had used Lemma 9.3, we would obtain a slight improvement in the space,
by a factor of Θ(log 1

ε ), at the loss of having a data structure in the AVD model. By
the simple observation that 1/2blgαc ≥ 1/α, the above space bound for the α ≥ 2 case
simplifies to O(n/εd(1− blgαcα − 1

2α )), and this establishes Theorem 1.4.

10. Proof of the area-product bound. In this section, we present lower
bounds for the product of the area of (restricted) ε-dual caps and the associated
Voronoi patches, and in particular, we present a proof of Lemma 5.2, which appeared
at the end of section 5.

We begin by recalling some notation. We are given a convex body K in Rd and a
pair (p, h(p)), where p ∈ ∂K and h(p) is a supporting hyperplane passing through p,
such that p lies within a unit ball centered at the origin. Also recall that pε denotes
the point lying at distance ε from p in the direction of the outward normal orthogonal
to h(p) at p. S denotes the Dudley hypersphere, which is centered at the origin and
is of radius 3. For y ≥ 1, let H(y)(p) be any hyperplane that is parallel to h(p) and
translated away from K by distance y. (This is illustrated in Figure 18. Note that
the figures of this section are not drawn to scale.) To simplify our descriptions, we
consider the directed line segment from p to pε to be “vertically downward,” so that
the hyperplanes h(p) and H(y)(p) are “horizontal” with h(p) above H(y)(p).

Recall that the ε-dual cap defined by p, denoted D(p), is the portion of ∂K
that is visible from pε (see Figure 19(a)). Also, recall that Vor(D(p)) consists of the
points that are exterior to K whose closest point on ∂K lies within D(p). Define
the base of D(p), denoted Γ(p), to be the intersection of h(p) with the convex hull of
K ∪ {pε}.

For δ > 0, recall that the δ-restricted ε-dual cap defined by p, denoted Dδ(p), is
D(p) ∩ Bδ(p), where Bδ(p) is the Euclidean ball of radius δ centered at p
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p

pε

S

y ≥ 1

ε
h(p)

H(y)(p)

K
1

3

p′′

Fig. 18. Definitions of h(p), H(y)(p), and S.

p

pε

δ
K

p

pε

S

K

(a) (b)

D(p)

Γ(p)

Vor(D(p)) ∩H(y)(p)

Vor(D(p)) ∩ S

Dδ(p)

Γδ(p)

H(y)

SVor(Dδ(p)) ∩H(y)(p)

Vor(Dδ(p)) ∩ S

H(y)

Fig. 19. Dual caps, bases, and Voronoi regions for the (a) unrestricted and (b) restricted cases.

(see Figure 19(b)). As before, Vor(Dδ(p)) is the set of points that are exterior to
K whose closest point on ∂K lies within Dδ(p). Also, the δ-restricted base, denoted
Γδ(p) is Γ(p) ∩Bδ(p).

Our objective in this section is to establish bounds on the product of the area
of a

√
ε-restricted ε-dual cap and its Voronoi patch on the Dudley hypersphere. It

will be easier to start with hyperplane patches on H(y)(p) and then generalize to
spherical patches on S. The main result of this section is given in the following
lemma. Part (ii) is equivalent to Lemma 5.2, which is our main objective. Part (i) is
a useful intermediate result.

Lemma 10.1. Let K be a convex body in Rd, and let 0 < ε ≤ 1/8 and δ =
√
ε.

There are constants ca and c′a (depending only on d) such that for any point p ∈ ∂K,
(i) given any y ≥ 1, area(Dδ(p)) · area(Vor(Dδ(p)) ∩H(y)(p)) ≥ c′a · εd−1;

(ii) if K is fat and has diameter at least 2ε, and p lies within a unit ball centered
at the origin, then area(Dδ(p)) · area(Vor(Dδ(p)) ∩ S) ≥ ca · εd−1.

This lemma holds generally for any δ ≥ √ε, but it suffices for our purposes to
consider the restricted case of δ =

√
ε. Note that the additional assumptions on

fatness and diameter of part (ii) are necessary for establishing a lower bound. If K is
not fat or not of sufficiently large diameter, then area(Dδ(p)) can be arbitrarily small.
Since the Dudley hypersphere is bounded, it would not be possible to establish any
lower bound on the product of their areas.
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The remainder of this section is devoted to proving this lemma. Because p will
be fixed throughout, in order to simplify the notation, we will drop references to p.
For example, we will use h, H(y), Dδ, Γδ, and Bδ in place of h(p), H(y)(p), Dδ(p),
Γδ(p), and Bδ(p), respectively.

Since it will be useful to relate sets on h with sets on H(y), we observe that each
of these hyperplanes can be consistently identified with Rd−1 by endowing them with
parallel coordinate frames, one centered at p (for h) and one centered at p’s orthogonal
projection onto H(y). Thus, a point on h and its vertical projection onto H(y) have
the same coordinates.

We start by proving Lemma 10.1(i). Since the value of y will be fixed throughout
this part of the proof, we refer to H(y) simply as H. Let p′′ denote the origin of H’s
coordinate system (the vertical projection of p onto H). (See Figure 18.) In order
to exploit Lemma 2.2 on the Mahler volume, rather than considering Vor(Dδ) ∩ H
directly, we will find it convenient to instead analyze the polar dual of the base Γδ.
Using the aforementioned coordinate frame, we can think of Γδ as a body in Rd−1.
For r =

√
ε/8, consider the generalized polar of the dual base, polarr(Γδ), which we

can think of as a convex subset of H. Because Γδ contains the origin of h (namely, p),
it follows directly that polarr(Γδ) is bounded and convex and also contains the origin
of H (namely, p′′). In order to obtain a lower bound on area(Vor(Dδ) ∩H), we will
first show that polarr(Γδ) is a subset of Vor(Dδ) ∩H and then derive a lower bound
on area(polarr(Γδ)). The first assertion is established by the following lemma.

Lemma 10.2. Given the preconditions of Lemma 10.1 and r =
√
ε/8, we have

polarr(Γδ) ⊆ Vor(Dδ) ∩H.

The proof is rather technical and involves a reduction to the problem in two-
dimensional space. Before giving the proof, it will help to provide some intuition
regarding the relationship between Vor(Dδ) ∩H and the polar of Γδ.

For the sake of simplicity, let us consider just the two-dimensional setting. Let
t denote a point of tangency on ∂K with respect to pε (see Figure 20), and let v be
the intersection of the line segment pεt with h. Shoot a ray from t perpendicular to
∂K until it intersects H. Let q denote this intersection point. Since K is convex,
all the points on the segment p′′q have their nearest neighbor on the portion of ∂K
between p and t, that is, they all lie within Vor(D). Observe that if we translate this
perpendicular line so that it emanates from pε instead of t, it will hit H at a point
q′ that is closer to p′′. Therefore, the segment p′′q′ also lies within Vor(D). Let `
denote the distance between pε and p′′. By similar triangles, it is easy to see that the
length of p′′q′ is ` · ε/‖pv‖. Since v ∈ Γ, q′ lies within polarr′(Γ), where r′ =

√
` · ε.

pε

t
K

p

` · ε
‖v‖

p′′

`

h

H

ε v

qq′

Fig. 20. The relationship between Vor(Dδ) ∩H and the polar of Γδ.
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pε

t

v

K ∩ Φ
p

Bδ
w

z′

≥ wx + wθ

p′′

max(δ, tθ)
8

h

H
v′

(a)

v′
p′′

p

H

h

hv

z

z′

pε

polarr(Γδ)

(b)

Φ

t
K ∩ Φ

w
v

Fig. 21. The reduction to the plane Φ.

Because y ≥ 1 and ε ≤ 1/8, we have r′ = Ω(
√
ε). This observation generalizes readily

to higher dimensions, and it follows that polarr′(Γ) ⊆ Vor(D)∩H. We will show how
to generalize this intuition to higher dimensions and the δ-restricted setting.

For any z ∈ H let w denote its nearest neighbor on ∂K. In order to prove
Lemma 10.2, it suffices to show that if w /∈ Dδ (implying that z /∈ Vor(Dδ)∩H), then
z /∈ polarr(Γδ). By our assumption that H lies below K it follows that w lies on the
“lower surface” of ∂K (meaning that a vertical ray directed downward from w does
not intersect the interior of K). Since w is not in the restricted cap, we know that
either w /∈ D or w /∈ Bδ.

It will simplify the analysis to reduce the problem to a two-dimensional setting.
Consider the plane Φ that contains the points p, pε, and w. (Note that these points
are not collinear.) Let t be the point of tangency on ∂K ∩ Φ with respect to pε that
lies on the same side as w (see Figure 21(a)). Let v be the intersection of the line
segment pεt with h. We may identify Φ with R2 by imposing a coordinate system
on Φ where the origin is at p, the y-axis is directed upward away from pε, and the
x-axis is parallel to the vector from p to v. Given a point u ∈ Φ, let ux and uy
denote its coordinates relative to this coordinate system. Further, if u ∈ ∂K ∩ Φ, let
uθ denote the slope of the (unique) supporting line on Φ passing through u. Note
that z need not lie on Φ. Let z′ be the orthogonal projection of z onto Φ. Observe
that tθ = ε/‖pv‖, and therefore ‖pv‖ = ε/tθ. By our choice of coordinate system and
assumptions about orientations, the coordinates of w, t and the slopes wθ and tθ are
all nonnegative quantities.

The point v lies on the base Γ of p’s unrestricted dual cap. By employing our
coordinate system on h, we can identify v with a vector in Rd−1 (emanating from p).
If ‖pv‖ ≤ δ, then v contributes a bounding halfspace to polarr(Γδ). This halfspace is
bounded by a hyperplane that is orthogonal to v and lies at distance r2/‖pv‖ from
the origin. Let us think of this halfspace, which we denote by hv, as lying on H (see
Figure 21(a)). Recalling that r =

√
ε/8, the distance of hv’s bounding hyperplane to

the origin p′′ is (ε/8)/‖pv‖ = tθ/8. On the other hand, if ‖pv‖ > δ, then v lies outside
the restricted base. In this case v’s subvector of length δ lies on the boundary of the
restricted base and contributes to polarr(Γδ) a halfspace whose bounding hyperplane
is at distance (ε/8)/δ from the origin. Recalling that δ =

√
ε, this is equal to δ/8.

Thus, in either case, polarr(Γδ) is bounded by a halfspace whose defining hyperplane
is orthogonal to v and lies at distance max(δ, tθ)/8 from the origin. This hyperplane
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intersects the horizontal line H ∩ Φ at some point v′ that lies to the right of p′′ at
distance v′x = max(δ, tθ)/8 (see Figure 21(b)).

Because the hyperplane passing through v′ is orthogonal to v, in order to show
that z /∈ polarr(Γδ), it suffices to show that z′ does not lie within hv, which is
equivalent to showing that z′x > v′x. We have thus reduced the problem to a two-
dimensional setting.

Recall that w is the closest point to z on ∂K. We assert that w is also the closest
point to z′ on ∂K∩Φ. The reason is that the squared distance from z to any point on
∂K ∩Φ can be expressed as the sum of the squared distance from z′ to this point and
the squared distance from z to z′. Since the latter quantity is the same for all points
on Φ, the closest point to z is also the closest point to z′. From basic properties of
convexity, it follows that the line wz′ is orthogonal to the support line passing through
w on ∂K ∩ Φ. Therefore, the slope of wz′ (in Φ’s coordinate system) is −1/wθ, and
in particular we have (z′x−wx)/(z′y −wy) = −wθ. Since h and H are separated by at
least unit distance (with h above H), we have wy − z′y ≥ 1, and so z′x ≥ wx + wθ.

Thus, to complete the proof of Lemma 10.2, it suffices to show that if w /∈ Dδ,
then v′x < wx + wθ. We first establish two useful technical results. These results will
be applied in a context where w lies within the unrestricted dual cap but outside the
restricted dual cap, that is, when wx ≤ tx but w /∈ Bδ. The first result shows that if
tθ is sufficiently small, the slope of the line pw is at most unity. The second shows
that if tθ is sufficiently large, the slope of pw is not much smaller than the slope of t’s
supporting line.

Lemma 10.3. Given the preconditions of Lemma 10.1 and the aforementioned
two-dimensional reduction, and given w and t as introduced above, where wx ≤ tx
and w /∈ Bδ,

(i) if tθ ≤ δ
√

8, then wy/wx ≤ 1, and
(ii) if tθ > δ

√
8, then wy/wx ≥ tθ/2.

The proof is a straightforward geometric exercise and has been omitted. (See [8]
for the full proof.)

We are now in position to complete the proof of Lemma 10.2. Recall that our
objective is to show that if w /∈ Dδ, then v′x < wx +wθ, where v′x = max(δ, tθ)/8. We
consider two cases, depending on tθ. First, if tθ ≤ δ

√
8, then v′x ≤ max(δ, δ

√
8)/8 =

δ/
√

8. Since the line pεt has slope tθ and ty ≥ 0, we have tx = (ty + ε)/tθ ≥ ε/tθ ≥
δ/
√

8. We consider two subcases. If wx > tx, then we have wx+wθ > tx ≥ δ/
√

8 ≥ v′x,
as desired. On the other hand, if wx ≤ tx, then w is inside the unrestricted cap D.
Since by our hypothesis, w is not in the restricted cap, it must be that w /∈ Bδ, that is,
w2
x +w2

y > δ2. By Lemma 10.3(i), we have wx ≥ wy. Therefore, 2w2
x ≥ w2

x +w2
y > δ2,

which implies that wx > δ/
√

2. Therefore, wx + wθ ≥ wx > δ/
√

2 > v′x, as desired.
For the second case, assume that tθ > δ

√
8. In this case v′x = tθ/8. As before, we

consider two subcases. If wx > tx, then by convexity wθ ≥ tθ, and so wx +wθ ≥ tθ >
v′x, as desired. On the other hand, if wx ≤ tx, then since w lies within the unrestricted
cap, we may infer that w /∈ Bδ. By Lemma 10.3(ii), we have wy/wx ≥ tθ/2. Because
the support line at w passes below the origin, we also have wθ ≥ wy/wx. Therefore
wx + wθ ≥ wy/wx ≥ tθ/2 > v′x. This completes the proof of Lemma 10.2.

Because it is easier to deal with flat objects than curved ones, before returning
to the proof of Lemma 10.1(i), we show that the area of the restricted dual cap is, up
to a constant factor, bounded below by the area of its base. This result is straightfor-
ward for unrestricted caps, since it is easy to show that the base is contained within
the orthogonal projection of the dual cap onto h. However, restriction complicates
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the analysis. The proof involves a rather technical but straightforward geometric
argument. We have omitted it, but it is given in full in [8].

Lemma 10.4. Given the preconditions of Lemma 10.1, it follows that area(Dδ) ≥
area(Γδ)/2d−1.

We are now ready to prove Lemma 10.1(i). Recall that r =
√
ε/8. As ob-

served earlier, polarr(Γδ) is a scaled copy of polar(Γδ) by a factor of r2, and therefore
(since these are (d − 1)-dimensional bodies) we have area(polarr(Γδ)) = r2(d−1) ·
area(polar(Γδ)). By applying Lemma 10.2, we have

area(Vor(Dδ) ∩H) ≥ area(polarr(Γδ)) = r2(d−1) · area(polar(Γδ)).

By Lemma 10.4, area(Dδ) ≥ area(Γδ)/2d−1, and therefore

area(Dδ) · area(Vor(Dδ) ∩H) ≥ area(Γδ)
2d−1 · r2(d−1) · area(polar(Γδ))

≥
(
r2

2

)d−1

area(Γδ) · area(polar(Γδ)).

We now apply the Mahler-volume bound. By Lemma 2.2 (in Rd−1), there exists a con-
stant cm (depending only on d) such that area(Γδ) · area(polar(Γδ)) ≥ cm. Therefore,

area(Dδ) · area(Vor(Dδ) ∩H) ≥ cm

(
r2

2

)d−1

= cm

( ε
16

)d−1
.

Selecting any c′a ≤ cm/16d−1 establishes Lemma 10.1(i).
Next, let us establish Lemma 10.1(ii). Recall that we assume that K is fat and of

diameter at least 2ε. In particular, let us assume that K is γ-fat, where γ is a constant
independent of n and ε that lies in the interval (0, 1]. (As a result of Lemma 2.1, we
may assume that γ is 1/d when applying this result.)

It is natural to try to generalize the approach used in part (i). First, we would
show that

area(Vor(Dδ) ∩ S) = Ω
(
r2(d−1) · area(polar(Γδ))

)
and area(Dδ) = Ω(area(Γδ)),

and then we would apply the Mahler-volume bound to yield a lower bound on the
product area(Γδ) · area(polar(Γδ)). A problem arises, however, if K is not smooth.
In particular, if some portion of the boundary of K in p’s vicinity is nearly vertical,
then the boundary of Γδ can be arbitrarily close to the origin (namely, p), implying
that polar(Γδ) cannot be bounded, and hence its area can be arbitrarily large. This
was not an issue in part (i), because H is also unbounded. But since S is bounded,
area(Vor(Dδ) ∩ S) cannot be arbitrarily large. We will remedy this by smoothing K
by taking its Minkowski sum with a small Euclidean ball of radius O(ε). We shall see
(in the proof of Lemma 10.7) that this allows us to constrain the area of polar(Γδ).
This smoothing operation requires us to adapt many of the prior results of this section
to this new context.

To construct the smoothed body, for the remainder of this section define ε′ =
ε/2, and let K ′ = K ⊕ ε′ (see Figure 22(a)). Recall that h denotes the supporting
hyperplane at p and pε is the point at distance ε from p in the direction orthogonal to
h. As before, for the sake of illustration, let us assume that pε is vertically below p.
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(a)

pε

K

ε′
h

K ′ = K ⊕ ε′

ε h′

p

(b)

p′

ε′
pε

K

K ′ = K ⊕ ε′

h′

p

Γ′δ

p′

δ′

ε′

Fig. 22. The smoothed body K′.

Let p′ be the midpoint of the segment ppε. Clearly, p′ ∈ ∂K ′, and the parallel
hyperplane h′ passing through p′ is a supporting hyperplane for K ′.

Let us also define the dual base in this smoothed context. Define Γ′ to be the
intersection of h′ and conv(K ′ ∪ {pε}). Let δ′ =

√
ε′ = δ/

√
2, and define the re-

stricted base Γ′δ to be the intersection of Γ′ and a ball of radius δ′ centered at p′ (see
Figure 22(b)). Our analysis will be based on K ′ and Γ′δ, as opposed to K and Γδ. Our
first objective will be to show that the area of Γ′δ is not significantly larger than that
of Γδ. As before, we endow h and h′ with parallel coordinate frames whose origins
are located at p and p′, respectively. Then we can think of Γδ and Γ′δ as convex sets
in Rd−1. The following lemma relates these two bodies.

Lemma 10.5. Given a convex body K that is γ-fat and of diameter at least 2ε and
given Γδ and Γ′δ as defined above, there exists a constant c (depending on γ and the
dimension d) such that area(Γ′δ) ≤ c · area(Γδ).

This result is not surprising, given that K is fat and ‖pp′‖ is within a constant
factor of ‖ppε‖. The proof involves straightforward geometric reasoning, but (as
always) restriction complicates the analysis. It is presented in full in [8].

Recall that Vor(Dδ)∩S consists of the set of points on the sphere S whose closest
point on ∂K lies within the restricted dual cap Dδ. Let D′δ denote the corresponding
restricted dual cap for K ′, that is, the set of points of ∂K ′ that are visible from pε
and lie within the ball Bδ′(p′). Our analysis will be based on establishing a lower
bound on the area of Vor(D′δ) ∩ S. The following lemma shows that this will provide
a lower bound on the area of Vor(Dδ) ∩ S.

Lemma 10.6. Given the preconditions of Lemma 10.1(ii), area(Vor(D′δ) ∩ S) ≤
area(Vor(Dδ) ∩ S).

Proof. We sketch the proof here, but complete details can be found in [8]. We
prove the stronger result that Vor(D′δ) ∩ S ⊆ Vor(Dδ) ∩ S. First observe that (by
our restriction on ε and the definition of δ) both Dδ and D′δ lie within the Dudley
hypersphere S. Consider any point q′′ ∈ Vor(D′δ) ∩ S. It suffices to show that
q′′ ∈ Vor(Dδ) ∩ S. Let q and q′ be the closest points on ∂K and ∂K ′, respectively,
to q′′. It follows from basic properties of the Minkowski sum that these three points
are collinear and there are supporting hyperplanes at q and q′ that are orthogonal to
this line. Since q′′ ∈ Vor(D′δ) ∩ S, we have q′ ∈ D′δ, which implies that q′ is visible
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from pε. By the existence of parallel supporting hyperplanes, q is also visible from
pε. Therefore, q lies in p’s unrestricted dual cap D. By basic properties of convexity,
‖pq‖ ≤ ‖p′q′‖, which implies that q lies within p’s restricted dual cap, and therefore
q′′ ∈ Vor(Dδ) ∩ S, as desired.

Before completing the proof of Lemma 10.1(ii), we exploit the smoothness of K ′

to establish a relationship between the areas of Vor(D′δ) ∩ S and polarr′(Γ′δ), where
the polar radius r′ is suitably modified for the smoothed context. This is given in the
next lemma.

Lemma 10.7. Given the preconditions of Lemma 10.1(ii) and r′ =
√
ε′/8, we have

area(Vor(D′δ) ∩ S) ≥ area(polarr′(Γ′δ)).

Proof. The proof involves a rather technical geometric analysis. We present a
sketch here, but complete details can be found in [8]. First, we use the fact that since
p is in K, there is a ball of radius ε′ = ε/2 centered at p that lies within K ′. It follows
that Γ′δ contains a (d−1)-dimensional Euclidean ball (centered at p′) of radius ε′/

√
3.

Let H ′ denote the hyperplane that is at unit distance below p′. Let p′′ denote
the vertical projection of p′ onto H ′. By the definition of the polar transformation,
polarr′(Γ′δ) (when viewed as a subset of H ′) is contained within a (d− 1)-dimensional
unit ball centered at p′′. Let C denote the semi-infinite generalized cylinder whose
horizontal cross section is polarr′(Γ′δ), whose upper surface lies on H ′, and which
extends vertically downward. Lemma 10.2 (applied now to K ′, ε′, polarr′(Γ′δ) and
Vor(D′δ)∩H ′) implies that polarr′(Γ′δ) ⊆ Vor(D′δ)∩H ′. Since this applies not only to
H ′ but to any hyperplane lying below H ′, it follows that C ⊆ Vor(D′δ). The remainder
of the proof involves showing that S is large enough that the orthogonal projection of
S ∩C onto H ′ is equal to polarr′(Γ′δ). Since S ∩C ⊆ Vor(D′δ)∩S, and since the area
of the orthogonal projection of a set cannot be larger than the area of the original
set, we have

area(Vor(D′δ) ∩ S) ≥ area(S ∩ C) ≥ area(polarr′(Γ
′
δ)),

as desired.

We are now ready to prove Lemma 10.1(ii). Recall that r′ =
√
ε′/8. By Lem-

mas 10.6 and 10.7, we have

area(Vor(Dδ) ∩ S) ≥ area(Vor(D′δ) ∩ S) ≥ area(polarr′(Γ
′
δ)).

As observed earlier, polarr′(Γ′δ) is a scaled copy of polar(Γ′δ) by a factor of (r′)2 =
ε′/8 = ε/16, and therefore (since these are (d− 1)-dimensional bodies) we have

area(Vor(Dδ) ∩ S) ≥
( ε

16

)d−1
· area(polar(Γ′δ)).

By Lemma 10.4, area(Dδ) ≥ area(Γδ)/2d−1. Also, by Lemma 10.5 there is a constant
c′′ (depending on the fatness parameter γ and d) such that area(Γ′δ) ≤ c′′ · area(Γδ).
Therefore, we have

area(Dδ) ≥
area(Γδ)

2d−1 ≥ area(Γ′δ)
c′′ · 2d−1 .

Combining these, we obtain

area(Dδ) · area(Vor(Dδ) ∩ S) ≥ area(Γ′δ)
c′′ · 2d−1 ·

( ε
16

)d−1
· area(polar(Γ′δ))

=
1
c′′

( ε
32

)d−1
area(Γ′δ) · area(polar(Γ′δ)).

D
ow

nl
oa

de
d 

01
/0

5/
18

 to
 1

43
.8

9.
89

.2
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

48 SUNIL ARYA, GUILHERME D. DA FONSECA, AND DAVID M. MOUNT

By applying Lemma 2.2 (in Rd−1) to Γ′δ, there exists a constant cm (depending on d)
such that

area(Γ′δ) · area(polar(Γ′δ)) ≥ cm.

Therefore, we have

area(Dδ) · area(Vor(Dδ) ∩ S) ≥ cm
c′′

( ε
32

)d−1
.

Selecting any ca ≤ (cm/c′′)(1/32)d−1 establishes Lemma 10.1(ii). This concludes our
proof of the area bounds.

11. Concluding remarks. In this paper we have presented an efficient data
structure for determining approximately whether a given query point lies within a
convex body. Our solution is based on a simple and natural quadtree-based algo-
rithm, called SplitReduce. Our principal technical contribution has been an analysis
of the space-time trade-offs for this algorithm. These are the first nontrivial space-
time trade-offs for this problem. We do not know whether this analysis is tight, but
we presented a lower bound example that demonstrates the limits of possible im-
provements. We also demonstrated the value of approximate polytope membership
by showing that our data structure can be combined with an AVD data structure to
produce significant improvements to the space-time trade-offs of approximate nearest
neighbor searching in Euclidean space.

Our analysis of the trade-offs involved a combination of a number of novel tech-
niques, which may be of broader interest. One notable example is the application
of the Mahler volume as a means of analyzing the local structure of a convex body
through consideration of both its primal and dual representations. This resulted in an
efficient two-pronged sampling strategy for computing hitting sets of low cardinality
for ε-dual caps. The Mahler volume has also been applied in [7] to derive an optimal
area-sensitive bound on the number of facets needed to approximate a convex body.

This work provokes a number of questions for further research. The first in-
volves extending approximate polytope membership queries to other approximate
query problems involving convex bodies. For example, in section 9 we showed how to
reduce approximate nearest neighbor searching in dimension d to vertical ray shoot-
ing queries in dimension d+ 1. However, the polytope involved had a very restricted
structure. It would be interesting to know whether there is a data structure exhibit-
ing similar trade-offs for answering approximate ray-shooting queries for general con-
vex bodies. Another example is answering approximate linear-programming queries,
where a convex body is preprocessed, and the problem is to determine an extreme
point of the body approximately in a given query direction. A further generalization
of this would be to extend the work of Barba and Langerman [13] to an approximate
setting. It particular, is it possible to preprocess convex bodies so that given two such
bodies that have been translated and rotated, it can be decided efficiently whether
they intersect each other approximately?

Our result on approximate nearest neighbor searching relies on the lifting trans-
formation to reduce the problem to approximate polytope membership. As a con-
sequence, this approach is applicable only to Euclidean distances. This raises the
question of whether there exists a more direct route to approximate nearest neighbor
searching that achieves similar space-time improvements and yet avoids reliance on
lifting. For example, Arya and Chan [5] have presented improvements to approximate
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nearest neighbor searching that do not involve lifting. This raises the hope that gen-
eralizations to other norms may be possible. While their focus was different from ours
(for example, space-time trade-offs are not considered), their results are inferior to
our best bounds. These better bounds arise explicitly from concepts like the Mahler
volume, which are applicable only in the context of convex approximation, and hence
they rely crucially on lifting. A major challenge is whether it is possible to bypass this
intermediate step in order to obtain analogous improvements for approximate nearest
neighbor searching.

Note added in proof. After the original submission of this paper, the authors
discovered a new approach to polytope membership that achieves query time O(log 1

ε )
with storage of only O(1/ε(d−1)/2) [9]. As a consequence, it is possible to answer ε-
approximate nearest neighbor queries for a set of n points in O(log n

ε ) time with
storage of only O(n/εd/2). While these new results surpass the results of this paper
theoretically, the data structure presented there involves significantly larger constant
factors and lacks the simplicity and practicality of the approach described here.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their many insightful comments.
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