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Abstract

We consider the planar point location problem from
the perspective of expected search time. We are given
a planar polygonal subdivision S and for each polygon
of the subdivision the probability that a query point lies
within this polygon. The goal is to compute a search
structure to determine which cell of the subdivision con-
tains a given query point, so as to minimize the ex-
pected search time. This is a generalization of the clas-
sical problem of computing an optimal binary search
tree for one-dimensional keys. In the one-dimensional
case it has long been known that the entropy H of the
distribution is the dominant term in the lower bound
on the expected-case search time, and further there ex-
ist search trees achieving expected search times of at
most H + 2. Prior to this work, there has been no
known structure for planar point location with an ex-
pected search time better than 2H, and this result re-
quired strong assumptions on the nature of the query
point distribution. Here we present a data structure
whose expected search time is nearly equal to the en-
tropy lower bound, namely H + o(H). The result holds
for any polygonal subdivision in which the number of
sides of each of the polygonal cells is bounded, and there
are no assumptions on the query distribution within
each cell. We extend these results to subdivisions with
convex cells, assuming a uniform query distribution
within each cell.

1. Introduction

The planar point location problem is one of the most
fundamental query problems in computational geome-
try. The problem is to preprocess a polygonal subdi-
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vision S into a data structure so that given any query
point q, the polygon of the subdivision containing q
can be reported quickly. Dobkin and Lipton [7] showed
that a query time of O(log n) is achievable with O(n2)
space. Preparata showed how the space could be re-
duced to O(n log n) [16], and Kirkpatrick [11] presented
a simple approach based on hierarchical triangulations,
which reduced the space to O(n). This was followed by
a number of other methods with better performance in
terms of constant factors and simplicity. These include
the methods by Edelsbrunner, Guibas, and Stolfi [8],
Cole [5], and Sarnak and Tarjan [17], and randomized
methods by Mulmuley [14] and Seidel [18]. Recently,
the question of the exact constant factor in query time
was raised in work by Goodrich, Orletsky and Ra-
maiyer [9]. This question was answered definitively by
Adamy and Seidel [1], who showed that point location
queries can be answered in log2 n+2

√

log2 n+o(
√

log n)
time and provided a similar lower bound.

All of this work was done in terms of worst-case
query times. In this paper we consider the expected-
case performance for planar point location. We assume
that for each polygon z ∈ S we are given the proba-
bility pz that a query point lies in z. As is common
in computational geometry, we will assume that the
probability that the query point lies on an edge or ver-
tex of the subdivision is zero. The problem is to pro-
duce a point location data structure whose expected
search time is as low as possible. At this point we
make no assumptions about the distribution of query
points within each polygon, but we will introduce this
later with some of our results.

This formulation is a natural generalization of one
of the best-known problems in the theory of data struc-
tures, namely that of constructing an optimal binary
search tree for a set of keys from some totally ordered
domain [10, 12]. If we think of the keys as being real
numbers then they naturally define a subdivision S of
the one-dimensional line into intervals. Following the
geometric convention above, let us assume that the
probability that a query equals a key is zero. Thus
the problem reduces to determining the interval be-
tween consecutive keys containing the query point. For



Query distribution
Subdivision Type within each cell Space Expected Query Time

Axis-parallel rectangles Arbitrary O(n)

Triangles (bounded complexity) Arbitrary O(n log n) H + O(H2/3) + O(1)
Convex polygons Uniform O(n log n)

Triangles (bounded complexity) Arbitrary O(n1+ǫ) H + 2
√

2H + log(
√

H + 1) + O(1)
Convex polygons Uniform

Table 1. Summary of results.

each such interval z let pz denote the probability that
a query point falls within this interval. The entropy of
the S, denoted H throughout, is defined

entropy(S) = H =
∑

z∈S

pz log(1/pz).

(Throughout the paper all logarithms are taken base
2.) A classical result due to Shannon implies that the
expected number of comparisons needed to answer such
queries is at least as large as the entropy of the proba-
bility distribution [12, 19]. It has also been known for
many years [13] that it is possible to construct a bi-
nary search tree whose expected search time is at most
H + 2.

We consider whether we can generalize these one-
dimensional results to the plane. In spite of the wealth
of worst-case results on the planar point location prob-
lem it is quite remarkable that the expected-case com-
plexity of the problem has received so little attention.
Recently, Arya et al. [2] showed that for subdivisions
consisting of convex polygons, assuming that the x and
y coordinates of the query point are chosen indepen-
dently from some probability distribution, the entropy
bound can be achieved to within a constant multiplica-
tive factor (2 using quadratic space and about 4 using
linear space).

In this paper, we improve upon their results sig-
nificantly. Let n denote the number of vertices in a
given polygonal subdivision S, and let H denote its
entropy. The polygonal faces of S are called cells. To
have any chance of solving the problem we will need
to make some limiting assumption on the complexity
of the cells in the subdivision. Otherwise it will not
generally be possible to bound the complexity of the
search by any function of entropy alone. (This issue
does not arise in the one-dimensional case, since inter-
vals have bounded complexity.) Our basic assumption
is that each cell of the subdivision is bounded by a
constant number of sides. Other than the knowledge
that a query point lies within cell z with probability
pz, we make no assumptions and assume no knowledge
of the query distribution. We show that we can extend

our results to convex polygonal cells with an arbitrary
number of sides, but to do so we need to add the as-
sumption that the query distribution is uniform within
each cell.

Our main result is that it is possible to design a
point location search structure such that the expected
query time is nearly optimal, growing1 as H + o(H).
We present two-methods that differ with respect to the
space needed. For the higher-space structure the lower
order term grows as O(

√
H), and in the lower-space

structure it grows as O(H2/3). Our results depend on
the nature of the subdivision and assumptions on the
query distribution. They are summarized in Table 1.
The case of cells of bounded complexity is described
in terms of triangles, but the generalization to cells of
bounded complexity is straightforward. Throughout
this paper we assume that the probability of the query
point lying in the unbounded face of the subdivision is
zero. It is well known that H ≤ log n + O(1), and thus
our best results on expected-case query time match the
worst-case query time of Adamy and Seidel [1] in the
dominant term, and are larger only by a factor of

√
2

in the second largest term.

The space used by our data structures is O(n) for
axis-parallel rectangles, O(n log n) for triangles (cells of
bounded complexity) and O(n log n) for convex poly-
gons with uniform query distribution. Our best results
on query time involve a data structure whose size is
O(n1+ǫ). (The space is bounded by a function of H ,
which is presented in detail in Theorem 1.)

The idea of using the entropy of the query distri-
bution as the basis for an analysis for geometric data
structures is a recent development in computational ge-
ometry. Arya and Fu [3] first applied this approach to
analyzing the complexity of approximate nearest neigh-
bor queries. A technique given in this paper was used
in obtaining the expected-case planar point location
results mentioned earlier [2].

Throughout the paper we assume that queries are

1Entropy generally increases with n, so it is reasonable to
treat H as an asymptotic quantity.
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answered through the use of the following standard
test, and measure the expected query time in terms
of the number of such tests needed. Our model con-
siders a unit test to be a binary determination of the
position of the query point in relation to a line (either
above/below or left/right). Points lying on the line are
classified uniformly to one side or the other. We call
the test a point-to-line comparison or sometimes simply
a comparison. For the case of axis-aligned rectangles
and triangle cells, these lines are either vertical and
pass through some vertex of the subdivision, or they
lie along an edge of the subdivision. This is the same
as the model introduced by Adamy and Seidel [1] in
their lower bound, and is used in all the common point
location algorithms. In the case of convex cells we gen-
eralize this slightly to allow lines that pass through any
two vertices of the subdivision.

2. Main Ideas

Our point location data structure is based on many
of the same methods used in the construction of worst-
case efficient point location structures. However, estab-
lishing efficient expected query time involves consider-
ably different techniques from worst-case query time.
In this section we give the intuition behind the meth-
ods, which we needed to develop for this task.

Let us focus for now on the case when the cells of
the given subdivision S are triangles. Recall that we as-
sume no knowledge of the distribution of query points
within each triangle. The use of point-to-line compar-
isons naturally defines a binary space partition (BSP)
tree [4], in which each node of the tree represents a
convex polygonal region of the plane. Suppose that we
construct a binary space partition (BSP) tree for S,
and answer point location queries by simply descending
the tree to find the leaf containing q. What properties
must this tree possess so that point location queries
can be answered efficiently?

To answer this question, observe that the expected
query time is given by the weighted external path
length [12], where the weight of a leaf is the proba-
bility that the query point lies in the region associated
with the leaf. Since the entropy of the set of leaves is
a lower bound on the weighted path length [12], this
suggests that the BSP tree should possess the following
two properties:

Property 1: The entropy of the leaves should be as
small as possible. Since the entropy of the leaves
cannot be less than the entropy of S, we would like
the entropy of the leaves to be close to the entropy
of S.

Property 2: The depth of a leaf should be close to
log(1/p), where p is the probability associated with
the leaf.

The second property helps to ensure that the expected
query time is close to the entropy of the leaves. We
elaborate on these properties.

2.1. Property 1

The first property suggests that we should try to
minimize the number of leaves generated by each cell
in S. To see this let fz denote the number of leaves
generated by a cell z ∈ S. By elementary calculus, the
entropy of the leaves is maximized when each of the
fz leaves generated by cell z has the same probability
(i.e., pz/fz). The entropy of the leaves is therefore at
most

∑

z∈S

pz log(fz/pz) = H +
∑

z∈S

pz log(fz). (1)

Observe that the bound in Eq. (1) is at most
H + log(fmax), where fmax is the maximum number of
fragments generated from any cell. This implies that if
we could construct a BSP tree that partitions each cell
in S into at most a constant number of fragments, then
the entropy of the leaves would exceed the entropy of S
by at most an additive constant. Unfortunately, such
a tree construction is known only for certain special
classes of subdivisions (e.g., axis-parallel rectangles).
But when S may contain arbitrary oriented segments,
it is not known whether such a tree can be constructed.
(Note that the existence of such a tree would imply
the existence of a BSP tree of linear size for arbitrary
oriented segments, which is an outstanding open prob-
lem.)

A key insight of this paper is to observe that a much
weaker requirement (instead of partitioning each cell of
S into a constant number of fragments) both ensures
that the entropy of the leaves is small and leads to
BSP trees that are easy to construct. To be precise, it
suffices to construct a BSP tree that splits each cell of S
with associated probability p into at most O(log(1/p)+
1) fragments. Using Eq. (1) and simple calculations, it
can be shown that the entropy of the leaves of this
tree is at most H + log(H + 1). We show that such
a BSP tree can be constructed using a modification of
the well-known trapezoid method of Preparata [16].

2.2. Property 2

The probability that the query point lies in the re-
gion associated with a leaf is not known exactly, since
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we are not given the query distribution within a cell.
Thus, to satisfy Property 2, our strategy is to construct
a tree in which the depth of any leaf generated from a
cell z ∈ S is close to log(1/pz). In this paper we present
two different ways of achieving this property. The first
approach is given in Section 3 and is based on a mod-
ification of the methods given by Preparata [16] and
Adamy and Seidel [1]. The second approach is given
in Section 4 and is more space-efficient. It is based
on first constructing a BSP tree satisfying Property 1
and then rearranging the leaves of this tree using the
centroid decomposition technique and applying certain
other transformations.

3. High Space Solution

In this section we prove the following theorem. For
simplicity we present the result for the case of trian-
gular subdivisions, but we will show later that it may
be generalized to subdivisions in which the cells have
constant combinatorial complexity.

Theorem 1 Given an n-vertex triangular subdivision
S, together with probabilities pz that a query point lies
within each cell z, we can build a data structure that
answers point location queries in expected query time

H + 2
√

2H + log(
√

H + 1) + O(1).

The space for the data structure is

O(n2
√

2H log n/(
√

H + 1)).

Other than the probabilities pz we assume no knowl-
edge of the query probability distribution. Recall that
H is bounded by log n + O(1), and hence the space

used is at most O(n2
√

2 log n
√

log n), which is O(n1+ǫ)
for any ǫ > 0. The preprocessing time is the same as
the space. We defer discussion of the construction time
to the full version.

As mentioned earlier, our data structure is based on
constructing a BSP tree T for S. Before building the
tree we construct a discrete probability distribution,
called the pseudo-probability, as follows. Let m denote
the total number of triangles in S. (Note that m is
Θ(n).) For each triangle z ∈ S, we assign a pseudo-
probability of p̂z/6 to each of its three vertices, where
p̂z = max(pz , 1/m). If a vertex is incident to several
triangles, then the pseudo-probability assigned to it is
the sum of the contribution from each incident triangle.
It is easy to see that the total pseudo-probability of
all the vertices is at most one. If the total pseudo-
probability is strictly less than one, we increase the
pseudo-probability of one or more vertices arbitrarily,

so that the total pseudo-probability becomes one. As
we will see in the analysis, the use of pseudo-probability
instead of the true probability is crucial to limiting the
fragmentation of cells of small probability. This helps
to reduce the space used by the search structure.

The tree T is built recursively in a top-down fash-
ion. In each stage of the recursion, we do the following.
Suppose that we are working on the subdivision con-
tained within a trapezoid u. Let p′u denote the sum
of the pseudo-probabilities of the vertices in its inte-
rior. (Initially u is the entire space and p′u is 1.) We
split u into two vertical slabs such that the pseudo-
probability of the vertices in the interior of each slab is
at most p′u/2. We repeat this for t levels, where t ≥ 1
is a suitable parameter (to be fixed later), each time
ensuring that the pseudo-probability of the resulting
slabs is halved. This partitioning can be represented
in a natural way by a balanced tree having 2t leaves,
representing the 2t vertical slabs. Each slab is fur-
ther partitioned into trapezoids by the segments of the
subdivision that completely cross it. Following Adamy
and Seidel [1], we build a weighted search tree [13] for
each slab, where the weights of the trapezoids are as-
signed as follows. If there are no segments intersecting
the trapezoid (empty trapezoid), its weight is p̂z/(h2t),
where z is the triangle in S that generates the trape-
zoid, and h is a suitable parameter (to be fixed later).
For the remaining trapezoids (non-empty trapezoids),
the weight is the pseudo-probability of all the vertices
in their interior. Finally, we recurse on the non-empty
trapezoids.

We now analyze the space and expected query time
as a function of the parameters t and h. For the pur-
pose of analysis, it is convenient to view the partition-
ing scheme as a multi-way tree as follows. Suppose that
in a stage of the recursion, trapezoid u is split into 2t

vertical slabs, each of which is partitioned into smaller
trapezoids. Then in the multi-way tree, there is a node
representing trapezoid u, which is made the parent of
the nodes representing these smaller trapezoids. Let
T ′ denote this multi-way tree.

For a node x of T , let region(x) denote the region as-
sociated with x, px denote the probability of the query
point lying in this region (more precisely, the probabil-
ity of visiting x during point location), and p′x denote
the pseudo-probability of all the vertices in its interior.
The following lemma bounds the number of leaves in
T generated by any triangle z ∈ S.

Lemma 1 The number of leaves in the BSP tree T
generated by triangle z in S is at most

3 · 2t

(

1

t
log

1

p̂z
+ 4

)

.
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Proof We start by bounding the number of internal
nodes of T ′ that overlap the interior of z. Since any
internal node of T ′ that overlaps the interior of z must
contain one of the vertices of z, it follows that there are
at most three such internal nodes at any level of T ′.

Also, since the pseudo-probability of a node de-
creases by a factor of at least 2t as we descend one
level in T ′, the pseudo-probability of a node at level
i of T ′ is at most 1/2t(i−1). Recall that the pseudo-
probability of the vertices of triangle z is at least p̂z/6.
It follows that if a node containing a vertex of z is at
level i, then

1

2t(i−1)
≥ p̂z

6
.

Simplifying this gives

i ≤ 1

t

(

log
1

p̂z
+ log 6

)

+ 1 ≤ 1

t
log

1

p̂z
+ 4.

Thus, the number of internal nodes of T ′ that overlap z
is at most 3((1/t) · log(1/p̂z)+4). Since any node of T ′

can have at most 2t children that overlap the interior
of z, the bound given in the lemma follows. ⊓⊔

Using this lemma, it is easy to bound the size of the
tree.

Lemma 2 The total number of nodes in the BSP tree
T is at most O(n2t(log(n)/t + 1)).

Proof By Lemma 1, a triangle z ∈ S yields at most
3 · 2t(log(m)/t+4) leaves in T (since p̂z ≥ 1/m). Thus
the total number of leaves, and hence the total number
of nodes, in T is at most O(m2t(log(m)/t + 1)). Since
m = O(n), the result follows. ⊓⊔

In Lemma 4, we bound the depth of a leaf gener-
ated from a triangle z ∈ S. To this end, we need the
following technical result.

Lemma 3 Let x be an internal node in the multi-way
tree T ′. Let s be any of the 2t vertical slabs into
which region(x) is partitioned. Then the total weight of
the weighted search tree corresponding to s is at most
(p′x/2t)(1 + 6/h).

Proof Recall that the segments in S partition s into
empty and non-empty trapezoids. Since the pseudo-
probability associated with s is at most p′x/2t, the to-
tal weight of all the non-empty trapezoids is at most
p′x/2t. We will show that the total weight of the empty
trapezoids is at most 6p′x/(2th), which will complete
the proof.

Let Gx denote the set of triangles in S that overlap
region(x). The construction implies that the triangles

in Gx have at least one vertex in region(x). Since p′x is
the sum of the pseudo-probability of all the vertices in
region(x), it follows that p′x ≥∑z∈Gx

p̂z/6.
Next observe that a triangle in Gx can generate at

most one empty trapezoid in slab s. Recall that the
weight of an empty trapezoid generated by triangle
z ∈ S is p̂z/(2th). Thus the total weight of the empty
trapezoids in s is at most

∑

z∈Gx
p̂z/(2th). By bound

on p′x from the previous paragraph, this is at most
6p′x/(2th).

⊓⊔

Lemma 4 Let x be a leaf in the BSP tree T generated
by triangle z ∈ S. Then the depth of x in T is at most

log 1
p̂z

+ t +
(

2 + O
(

1
h

))

(

1
t log 1

p̂z

+ 1
)

+ log(h + 1) + O(1).

Proof Let P = x1, x2, . . . , xl be the path from the
root to the leaf x = xl in the multi-way tree T ′. Let s
denote the vertical slab in region(xi) that contains the
trapezoid associated with xi+1, and let y denote the
node in T corresponding to s. To prove the lemma,
we will separately bound the length of the paths in T
from xi to y and from y to xi+1. By construction, the
length of the path in T from xi to y is t.

To bound the length of the path in T from y to
xi+1, recall that xi+1 is a leaf in the weighted search
tree for slab s. By standard results on weighted search
trees [13], the length of the path in T from y to xi+1

is at most log(W/w) + 2, where W is the weight of all
the trapezoids in slab s, and w is the weight of the
trapezoid associated with xi+1. By Lemma 3, W ≤
(p′xi

/2t)(1 + 6/h). We now consider two cases: (i) 1 ≤
i ≤ l − 2 and (ii) i = l − 1. In the first case, xi+1 is a
non-empty trapezoid, so its weight w is the same as its
pseudo-probability p′xi+1

. Thus, the length of the path
in T from y to xi+1 is at most

log

[

(p′xi
/2t)(1 + 6/h)

p′xi+1

]

+ 2

= (log p′xi
− log p′xi+1

) − t + log
(

1 + 6
h

)

+ 2.

In the second case, xi+1 = xl is an empty trapezoid, so
its weight w is p̂z/(2th). Thus, the length of the path
in T from y to xl is at most

log

[

(p′xl−1
/2t)(1 + 6/h)

p̂z/(2th)

]

+ 2

= (log p′xl−1
− log p̂z) + log(h + 6) + 2.
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By using the above claim to bound the lengths of
the paths in T between adjacent pairs of vertices in P ,
and summing and cancelling the telescoping probabil-
ity terms, it is easy to see that the depth of x in T is
at most

log 1
p̂z

+ t +
(

2 + log
(

1 + 6
h

))

(l − 2)

+ log(h + 1) + O(1).
(2)

Since xl−1 must contain a vertex of triangle z (which
generates leaf x), it follows that p′xl−1

≥ p̂z/6. Also,
since the pseudo-probability of a node at level i is at
most 1/2t(i−1), so p′xl−1

≤ 1/2t(l−2). Thus,

l − 2 ≤ 1

t
log

1

p′xl−1

≤ 1

t

(

log
1

p̂z
+ log 6

)

.

Substituting this value of l in Eq. (2), and using the
fact that log(1 + 6/h) = O(1/h), after some simplifica-
tion, we get the bound on the depth of x given in the
statement of the lemma.

⊓⊔

We can now bound the expected query time.

Lemma 5 The expected query time using the BSP tree
T is at most

H + t +

(

2 + O

(

1

h

))(

H

t
+ 1

)

+ log(h + 1) + O(1).

Proof For any triangle z ∈ S, let Lz denote the set
of leaves generated by z. The expected query time is
given by

∑

z∈S

∑

x∈Lz

pxdx,

where dx denotes the depth of x. Applying Lemma 4,
this sum is at most

∑

z∈S

∑

x∈Lz

px

[

log 1
p̂z

+
(

2 + O
(

1
h

))

(

1
t log 1

p̂z

+ 1
)

+ t + log(h + 1) + O(1)
]

.

Noting that p̂z ≥ pz and simplifying we easily obtain
the bound given in the statement of the lemma. ⊓⊔

In order to get the best bound on the expected
query time, we choose t = ⌈

√
2H ⌉ and h = ⌈

√
H ⌉

in Lemma 5. This yields an expected query time of at
most H +2

√
2H+log(

√
H +1)+O(1). Using Lemma 2

and noting that t is at most O(
√

log n), we obtain a

bound on the space of O(n2
√

2H log n/(
√

H +1)). This
completes the proof of Theorem 1.

Remark: Setting t = ⌈
√

2H ⌉ + c, where c is
a positive integer, and h = ⌈

√
H ⌉, it is easy to

see from Lemma 4 that the worst-case query time is
(1 + O(1/c)) log n. Simultaneously, the bound on ex-
pected performance given by Theorem 1 also holds.

4. Low Space Solutions

In this section we prove the following theorem. We
defer discussion of the preprocessing time to the full
version.

Theorem 2 Let S be an n-vertex planar subdivision.
Assume that the query distribution within each cell is
unknown.

(i) If S consists of axis-parallel rectangles, we can
build a data structure of O(n) space that provides
expected query time of H + O(H2/3) + O(1).

(ii) If S consists of triangles, we can build a data
structure of O(n log n) space that provides expected
query time of H + O(H2/3) + O(1).

Note that the space used in these solutions is better
than the space used in Theorem 1, while the expected
query time is just a little worse. The improvement in
space is achieved by following a two-step approach. In
the first step we construct a BSP tree T for the given
subdivision S, that partitions each cell of S into few
fragments (constant number of fragments if S consists
of axis-parallel rectangles, and O(log(1/p) + 1) frag-
ments, where p is the probability associated with a
cell, if S consists of triangles). However, we do not
care about the depth of the leaves, so a high proba-
bility leaf may be very deep in the tree T . Thus, T
may not provide good expected query time if directly
used for point location. In the second step, we correct
this by rearranging the leaves of the tree and applying
certain other transformations. The goal of these trans-
formations is to ensure that, if a leaf of the BSP tree is
generated from a cell of S with probability p, then we
can reach it using close to log(1/p) comparisons.

4.1. Transforming the BSP Tree

The following lemma is crucial to the proof of The-
orem 2. It is related to the second of the two steps
mentioned above. Define a simple BSP tree to be a
BSP tree with the property that the region associated
with any node of the tree is a polygon with at most a
constant number of sides.

Lemma 6 Let T be a simple BSP tree with N nodes.
We are given a weight wx for each leaf x of T such that
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the total weight of all the leaves is at most one. Then
for any positive integer α > 1 (we call α the compres-
sion parameter), we can build a search structure that
allows us to do the following: Given a query point q we
can determine the leaf x of T that contains q using at
most

[

1 + O

(

1√
α

)]

log
1

wx
+ O(α)

point-to-line comparisons. The space for the search
structure is O(N).

We devote the remainder of this section to proving
this lemma. We show how to build the desired search
structure in two steps. In the first step we build a
centroid decomposition tree of tree T . Define the weight
of a tree to be the total weight of the leaves in the tree,
and the weight of a node to be the total weight of
the leaves in the subtree rooted at the node. Define a
centroid edge in a binary tree of weight W to be an edge
whose removal partitions the tree into two subtrees of
weight at most 2W/3. It follows from standard results
that a binary tree must have such an edge or it must
have a leaf with weight more than 2W/3 (in the latter
case, we will abuse terminology and refer to the edge
connecting the leaf to the rest of the tree as the centroid
edge). Moreover, by taking centroids, the nodes of T
can be recursively restructured into a binary tree T ′

with the following properties:

(a) T ′ has the same leaves as T .

(b) Let y be any internal node of T ′ and let wy denote
its weight. Either both children of y have weight
at most 2wy/3 or one child of y is a leaf of weight
more than 2wy/3.

(c) Any node v of T ′ is associated with a polygon P (v)
having at most c sides, where c is a constant. All
leaves in the left subtree of v are contained within
P (v) and all leaves in the right subtree of v are con-
tained outside P (v). (This property follows from
the fact that the regions associated with the nodes
of T are the separators P (v) for the nodes of T ′.
Since T is a simple BSP tree, P (v) has constant
complexity.)

By property (c), we can use T ′ to do point location
by a simple descent in the tree starting from the root.
If a query point lies in leaf x, then the number of com-
parisons needed to locate it is at most c(dx −1), where
dx denotes the depth of x. By property (b), the depth
of leaf x is at most log3/2(1/wx)+2. Thus the number
of comparisons needed is at most c(log3/2(1/wx) + 1).

In the remainder of the proof, we will show how
to reduce the multiplicative factor of log(1/wx) from

(c/ log(3/2)) to close to 1. To this end, we transform
the tree T ′ to a partition tree T ′′ using the follow-
ing recursive procedure. Let α be the positive integer
specified in the statement of the lemma. We create
a root node v′′ for the tree T ′′; the region associated
with v′′ is the same as the region associated with the
root of T ′. If T ′ consists of a single leaf, then there
is nothing else to be done. Otherwise, we construct a
set M of nodes of T ′ as follows. Initially M consists
of only the root of T ′. In each iteration, we remove
the node u from M that has the largest weight among
all the nodes in M that are internal nodes of T ′. We
then insert the two children of u into M . We continue
in this manner until we have accumulated 2α nodes
in M , or all the nodes in M are leaves in T ′. It is
clear that the set M consists of disjoint descendants
of the root of T ′, and all the leaves in T ′ are con-
tained in the associated subtrees. Let d = |M |, and let
T ′

1, T
′
2, . . . , T

′
d be the subtrees of T ′ rooted at the nodes

in M . We recursively transform trees T ′
1, T

′
2, . . . , T

′
d

into T ′′
1 , T ′′

2 , . . . , T ′′
d , respectively. Finally, we make the

roots of the trees T ′′
i , 1 ≤ i ≤ d, children of node v′′.

This completes the description of the construction.
We view T ′′ as a compressed form of the tree T ′, repre-
senting the same hierarchical subdivision. Clearly, any
node v′′ in T ′′ has a corresponding node v′ in T ′; the
associated regions and the set of leaves in the subtrees
rooted at the nodes is the same. In order to achieve the
desired speed-up in locating a query point, our strategy
is to employ T ′′ instead of T ′ for point location.

Suppose that the query point q lies in the region as-
sociated with a node v ∈ T ′′. It is easy to see that we
can determine the child of v which contains the query
point q by doing point location in a planar subdivision
of complexity at most c ·dv, where dv denotes the num-
ber of children of v. As part of the preprocessing we
build the worst-case planar point location data struc-
ture given by Adamy and Seidel [1] for each node of
T ′′. For a node v, this data structure uses O(dv) space
and allows us to determine the child containing q in
log(dv) + O(

√

log(dv)) comparisons. Since dv ≤ 2α,
the number of comparisons is bounded by α + O(

√
α),

We now bound the space and query time. Observe
that the space used by the point location data struc-
tures for all the internal nodes of T ′′ is O(s), where s is
the number of nodes in T ′′. Further, s is no more than
the number of nodes in T . Hence the total space used
is O(N). The following lemma is crucial to bounding
the query time.

Lemma 7 Let v′′ be a child of u′′ in T ′′, and let wv′′

and wu′′ denote the weight of the subtrees rooted at
nodes v′′ and u′′, respectively. Then if v′′ is an internal
node of T ′′, wv′′ is at most (1/2α−1)wu′′ .
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Proof Let u′ and v′ be the nodes in T ′ corresponding
to nodes u′′ and v′′ in T ′′. Obviously wu′ = wu′′ , wv′ =
wv′′ , and v′ is an internal node. Recall that during the
construction of T ′′ we determine the children of u′′ by
incrementally growing a set M of nodes of T ′. Initially
M consists only of u′; the final set M (denote it Mf )
contains the descendants of u′ corresponding to the
children of u′′. By construction |Mf | = 2α since v′ is
an internal node (because otherwise Mf should contain
only leaf nodes).

For the sake of contradiction, suppose that wv′ >
(1/2α−1)wu′ . It is easy to see that, as we grow the
set M , M must always contain either v′ or some an-
cestor of v′ (lying on the path from u′ to v′). Thus,
there is always a node in M that is an internal node
of T ′ and whose weight is ≥ wv′ > (1/2α−1)wu′ . Re-
call that at each step of the construction, we remove
a node x from M that has the largest weight among
all nodes in M that are internal nodes of T ′ and then
insert the two children of x into M . It follows that any
node x removed from M must have weight more than
(1/2α−1)wu′ .

We claim that the average weight of a node in Mf

exceeds (1/2α)wu′ . To prove this we divide the nodes
in Mf into two categories. The first category consists of
nodes whose siblings (in T ′) are also present in Mf , and
the second category consists of nodes whose siblings are
not present in Mf . We will show the following: (i) for
any node y1 in the first category, the sum of the weight
of node y1 and its sibling is more than (1/2α−1)wu′ , and
(ii) the weight of any node y1 in the second category
is more than (1/2α)wu′ . Clearly, (i) and (ii) together
imply the desired claim.

Let y2 and y denote the sibling and parent in T ′,
respectively, of node y1. To prove (i), note that y must
have been removed from M and so by our earlier obser-
vation the weight of y must exceed (1/2α−1)wu′ . Since
the sum of the weight of y1 and y2 equals the weight
of their parent y, this completes the proof of (i).

To prove (ii), observe that since y2 is not present
in Mf , it must have been removed from M , and so
its weight must exceed (1/2α−1)wu′ . Noting that y2

cannot be a leaf, and using property (b) of T ′, it follows
that the weight of y1 is at least 1/2 the weight of y2.
Thus, the weight of y1 is more than (1/2α)wu′ .

Since there are 2α nodes in Mf and their average
weight exceeds (1/2α)wu′ , hence the total weight of the
nodes in Mf exceeds wu′ , which is a contradiction (the
weight of the nodes in Mf should be exactly wu′ , since
these nodes are disjoint descendants of u′ covering the
same region as u′).

⊓⊔

We can now bound the query time as follows. Sup-
pose that the query point q lies in a leaf x of T ′′. Let
P = x1, x2, . . . , xl be the path from the root to the leaf
x = xl in T ′′. It follows from Lemma 7 that the weight
of an internal node at level i is at most (1/2α−1)i−1.
Thus wxl−1

≤ (1/2α−1)l−2. Since wx = wxl
≤ wxl−1

,
it follows that wx ≤ (1/2α−1)l−2, which yields

l − 1 ≤ 1

α − 1
log

1

wx
+ 1.

Recall that the number of comparisons needed at each
of the l − 1 internal nodes is bounded by α + O(

√
α).

Thus, the number of comparisons needed to locate q is
at most

(α + O(
√

α))

(

1

α − 1
log

1

wx
+ 1

)

≤
(

1 + O

(

1√
α

))

log
1

wx
+ O(α).

This completes the proof of Lemma 6.

4.2. Axis-parallel Rectangles

Theorem 2(i) is based on the fact that we can con-
struct an O(n) size BSP tree, when S consists of axis-
parallel rectangles. This important result was proved
by Paterson and Yao; Amore and Franciosa showed
how to improve the constant factor in the size of the
tree.

Theorem 3 (Paterson and Yao [15], Amore and Fran-
ciosa [6]) Let S be an n-vertex planar subdivision con-
sisting of axis-parallel rectangles. Then in O(n log n)
time we can construct a simple BSP tree that parti-
tions each rectangle in S into at most six fragments.

We construct the desired search structure in two
steps. In the first step we construct the BSP tree T
described in Theorem 3. We assign a weight to each
leaf of T as follows. For a rectangle z ∈ S, define
p̂z = max(pz, 1/m), where m denotes the number of
rectangles in S. If a rectangle z generates f leaves, then
we assign a weight of p̂z/(2f) to each of these leaves.
In the second step, we build the search structure T ′′

(using compression parameter α) corresponding to T ,
as described in Lemma 6. We answer point location
queries by descending T ′′ to find the leaf containing
the query point. We now analyze the query time.

Lemma 8 Let q be a query point contained in a rect-
angle z ∈ S. Then using T ′′ the number of point-to-line
comparisons needed to determine the leaf containing q
is at most [1 + O(1/

√
α)] log(1/p̂z) + O(α).
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Proof By Theorem 3, rectangle z generates at most
six leaves, and so the weight wx assigned to each of
the leaves is at least p̂z/12. The lemma now follows by
applying Lemma 6. ⊓⊔

Lemma 9 The expected query time using the tree T ′′

is at most [1 + O(1/
√

α)]H + O(α).

Proof For a rectangle z ∈ S, let Lz denote the set
of leaves in T generated from z. Using Lemma 8, it
follows that the expected query time is at most

∑

z∈S

∑

x∈Lz

px

([

1 + O

(

1√
α

)]

log
1

p̂z
+ O(α)

)

.

Noting that p̂z ≥ pz, the lemma follows after some
simplification. ⊓⊔

For the best bound, we set α =
⌈

H2/3
⌉

in Lemma 9.
It follows that the expected query time is at most H +
O(H2/3) + O(1). The space used by T ′′ is O(n). This
completes the proof of Theorem 2(i).

4.3. Triangles

First we build a BSP tree T for S as in Section 3.
The construction is carried out with the parameter t
set to one. There is only one significant difference from
the construction given earlier. We do not need to build
weighted search trees for the slabs; instead, any search
tree will suffice (note this means that the parameter h
is irrelevant). In the second step, we assign a weight to
each leaf of T as follows. If a triangle z ∈ S generates
f leaves, then we assign a weight of p̂z/(2f) to each of
these leaves. (Recall that p̂z = max(pz , 1/m), where m
is the number of triangles in S.) Finally we build the
search structure T ′′ (using compression parameter α)
corresponding to T , as described in Lemma 6.

Note that T is a simple BSP tree since the region
associated with each node is a trapezoid. By Lemma 2,
the number of nodes in T is O(n log n). Setting t to one
in Lemma 1 implies the following lemma.

Lemma 10 The number of leaves in the BSP tree T
generated by triangle z ∈ S is at most O(log(1/p̂z)+1).

We now analyze the time for answering queries using
T ′′. The proof is similar to that given for axis-parallel
rectangles in Section 4.2.

Lemma 11 Let q be a query point contained in a tri-
angle z ∈ S. Then using T ′′ the number of point-to-line

comparisons needed to determine the leaf containing q
is at most
[

1 + O

(

1√
α

)]

·
[

log
1

p̂z
+ log

(

log
1

p̂z
+ 1

)]

+ O(α).

Proof By Lemma 10, triangle z generates at most
c(log(1/p̂z) + 1) leaves, where c is a constant. Thus,
the weight assigned to each of these leaves is at least
p̂z/(2c(log(1/p̂z) + 1)). The lemma now follows by ap-
plying Lemma 6. ⊓⊔

Lemma 12 The expected query time using the tree T ′′

is at most [1 + O(1/
√

α)] · [H + log(H + 1)] + O(α).

Proof For a triangle z ∈ S, let Lz denote the set
of leaves in T generated from z. Using Lemma 11, it
follows that the expected query time is at most

∑

z∈S

∑

x∈Lz

px

(

[

1 + O

(

1√
α

)]

[

log
1

p̂z
+ log

(

log
1

p̂z
+ 1

)]

+ O(α)

)

≤
[

1 + O

(

1√
α

)]

∑

z∈S

[

pz log
1

pz

+pz log

(

log
1

pz
+ 1

)

]

+ O(α). (3)

We now bound the last term in the summation as
follows.

∑

z

pz log

(

log
1

pz
+ 1

)

≤
∑

z

log

(

log
1

pz
+ 1

)pz

≤ log
∏

z

(

log
1

pz
+ 1

)pz

.

Using the fact that the geometric mean can be no more
than the arithmetic mean, we obtain

∑

z

pz log

(

log
1

pz
+ 1

)

≤ log
∑

z

pz

(

log
1

pz
+ 1

)

≤ log(H + 1).

The lemma now follows by substituting this in
Eq. (3) and simplifying. ⊓⊔

For the best bound, we set α =
⌈

H2/3
⌉

in
Lemma 12. It follows that the expected query time is
at most H + O(H2/3) + O(1). Since the space used by
T is O(n log n), the space used by T ′′ is also O(n log n).
This completes the proof of Theorem 2(ii).
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Remark: Setting m =
⌈

H2/3
⌉

+c, where c is a pos-
itive integer, it is easy to see from Lemma 11 that the
worst-case query time is (1 + O(1/

√
c)) log n. Simulta-

neously, the bound on expected performance given by
Theorem 2(ii) also holds. A similar remark can also be
made for S consisting of axis-parallel rectangles.

Remark: We observe that the results given in The-
orems 1 and 2(ii) can be generalized to polygons with
bounded complexity. The search structures are built
as follows. We triangulate each polygon z ∈ S, and
assign a probability of pz/c to the resulting triangles,
where c is the number of triangles in z. We then build
the point location structures as in Sections 3 and 4.3.
The straightforward proofs are omitted. Intuitively,
the theorems hold because the entropy of the trian-
gulation differs from the entropy of S by at most an
additive constant.

5. Convex Polygons with Uniform Inte-

rior Distribution

The main result of this section is the following.

Lemma 13 Let S be an n-vertex planar subdivision
consisting of convex polygons; the query distribution
within each polygon is assumed to be uniform. Then
we can triangulate each polygon such that the entropy
of the resulting set of triangles exceeds the entropy of
S by at most an additive constant.

It readily follows from the above lemma that the
bounds on space and expected query time given in The-
orems 1 and 2(ii) also apply to any subdivision S con-
sisting of convex polygons, assuming that the query
distribution is uniform within each polygon.

The proof of Lemma 13 relies on the following ob-
servation.

Lemma 14 Given a convex polygon P with n vertices,
there exist three vertices such that the area of the tri-
angle defined by these vertices is at least 1/4 the area
of P .

Proof Let v1 and v2 denote the pair of vertices of P
that realize the diameter of P , and let v3 denote the
vertex that is farthest from the line v1v2. We claim
that the area of the triangle defined by v1, v2, and v3 is
at least 1/4 the area of P . Without loss of generality,
let v3 lie above v1v2. Let v4 denote the vertex farthest
from v1v2 among vertices that are below it. Let R
denote the rectangle defined by the two lines parallel
to v1v2, passing through v3 and v4, respectively, and
by the two lines perpendicular to v1v2, and passing
through v1 and v2, respectively. It is an easy geometric

exercise to show that P is completely contained with R,
and the area of the triangle defined by v1, v2, and v3 is
at least 1/4 the area of R. This implies the lemma. ⊓⊔

Proof (of Lemma 13)
We triangulate each convex polygon in S as follows.

Let z denote any convex polygon. By Lemma 14, we
can find a triangle in z whose area if at least 1/4 the
area of z. We insert this triangle into the triangulation.
This partitions the remainder of z into at most three
convex polygons, which we triangulate recursively.

We bound the entropy of this triangulation. Let Tz

denote the set of triangles in the triangulation of z,
constructed by the above procedure. We claim that

entropy(Tz) ≤ pz log
1

pz
+ 8pz, (4)

where entropy(Tz) is the quantity
∑

x∈Tz
px log(1/px).

The proof of this claim is by induction on the number
of sides of z. For the basis case, z has three sides, and
the claim is trivially true. Suppose that the claim holds
for any convex polygon with at most i sides, for some
i ≥ 3. We will show the claim for any convex polygon
z with i + 1 sides.

Let y denote the first triangle added to the trian-
gulation of z. Since the area of y is at least 1/4 the
area of z and the query distribution within z is uni-
form, so py ≥ pz/4. Note that z − y consists of (at
most) three convex polygons; denote them by z1, z2,
and z3. By the induction hypothesis, entropy(Tzi

) ≤
pzi

log(1/pzi
) + 8pzi

, for 1 ≤ i ≤ 3. Thus entropy(Tz)
can be written as

py log
1

py
+

3
∑

i=1

entropy(Tzi
)

≤ py log
1

py
+

3
∑

i=1

(

pzi
log

1

pzi

+ 8pzi

)

=

(

py log
1

py
+

3
∑

i=1

pzi
log

1

pzi

)

+ 8

3
∑

i=1

pzi
. (5)

Obviously py +
∑3

i=1 pzi
= pz. Since py ≥ pz/4, it

follows that
∑3

i=1 pzi
≤ 3pz/4. Also, by elementary

calculus, the maximum value of
(

py log
1

py
+

3
∑

i=1

pzi
log

1

pzi

)

subject to the constraint that py+
∑3

i=1 pzi
= pz occurs

when py = pz1
= pz2

= pz3
= pz/4, and is given by

pz log(4/pz). Using these bounds in Eq. (5) we obtain

entropy(Tz) ≤ pz log
4

pz
+ 8

(

3

4
pz

)

= pz log
1

pz
+ 8pz,
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which completes the proof by induction.

Summing both sides of Eq. (4) over all the polygons
in S, it follows that the entropy of triangulation exceeds
the entropy of S by at most 8.

⊓⊔
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