
Approximate Convex Intersection Detection with Applications to

Width and Minkowski Sums

Sunil Arya∗

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
arya@cse.ust.hk

Guilherme D. da Fonseca†

Université Clermont Auvergne,
LIMOS, and INRIA Sophia Antipolis

France
fonseca@isima.fr

David M. Mount‡

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

mount@cs.umd.edu

Abstract

Approximation problems involving a single convex body in Rd have received a great deal of
attention in the computational geometry community. In contrast, works involving multiple convex
bodies are generally limited to dimensions d ≤ 3 and/or do not consider approximation. In this paper,
we consider approximations to two natural problems involving multiple convex bodies: detecting
whether two polytopes intersect and computing their Minkowski sum. Given an approximation
parameter ε > 0, we show how to independently preprocess two polytopes A,B ⊂ Rd into data
structures of size O(1/ε(d−1)/2) such that we can answer in polylogarithmic time whether A and B
intersect approximately. More generally, we can answer this for the images of A and B under affine
transformations. Next, we show how to ε-approximate the Minkowski sum of two given polytopes
defined as the intersection of n halfspaces in O(n log(1/ε) + 1/ε(d−1)/2+α) time, for any constant
α > 0. Finally, we present a surprising impact of these results to a well studied problem that
considers a single convex body. We show how to ε-approximate the width of a set of n points in
O(n log(1/ε) + 1/ε(d−1)/2+α) time, for any constant α > 0, a major improvement over the previous
bound of roughly O(n+ 1/εd−1) time.

1 Introduction

Approximation problems involving a single convex body in d-dimensional space have received a great deal of
attention in the computational geometry community [4,9–12,18,19,45]. Recent results include near-optimal
algorithms for approximating the convex hull of a set of points [9,19], as well as an optimal data structure
for answering approximate polytope membership queries [11]. In contrast, works involving multiple convex
bodies are generally limited to dimensions d ≤ 3 and/or do not consider approximation [2,13,29,30,44].
In this paper we present new approximation algorithms to natural problems that either involve multiple
convex polytopes or result from such an analysis:

• Determining whether two convex polytopes A and B intersect

• Computing the Minkowski sum, A⊕B, of two convex polytopes

∗Research supported by the Research Grants Council of Hong Kong, China under project number 16200014.
†Research supported by the European Research Council under ERC Grant Agreement number 339025 GUDHI (Algorithmic

Foundations of Geometric Understanding in Higher Dimensions).
‡Research supported by NSF grant CCF–1618866.

1

• Computing the width of a convex polytope A (which results from an analysis of the Minkowski sum
A⊕ (−A))

Throughout we assume that the input polytopes reside in Rd and are full-dimensional, where the
dimension d is a fixed constant. Polytopes may be represented either as the convex hull of n points (point
representation) or as the intersection of n halfspaces (halfspace representation). In either case, n denotes
the size of the polytope.

1.1 Convex Intersection

Detecting whether two geometric objects intersect and computing the region of intersection are fundamental
problems in computational geometry. Geometric intersection problems arise naturally in a number of
applications. Examples include geometric packing and covering, wire and component layout in VLSI,
map overlay in geographic information systems, motion planning, and collision detection. Several surveys
present the topics of collision detection and geometric intersection [33,36,37].

The special case of detecting the intersection of convex objects has received a lot of attention in
computational geometry. The static version of the problem has been considered in R2 [39, 42] and
R3 [20, 38]. The data structure version where each convex object is preprocessed independently has been
considered in R2 [13, 21,22,25] and R3 [13, 22,25,26].

Recently, Barba and Langerman [13] considered the problem in higher dimension. They showed how
to preprocess convex polytopes in Rd so that given two such polytopes that have been subject to affine
transformations, it can be determined whether they intersect each other in logarithmic time. However, the
preprocessing time and storage grow as the combinatorial complexity of the polytope raised to the power
bd/2c. Since the combinatorial complexity of a polytope with n vertices can be as high as Θ(nbd/2c), the

storage upper bound is roughly O(nd
2/4). This high complexity motivates the study of approximations to

the problem.
We define approximation in a manner that is sensitive to direction. Consider any convex body K in

Rd and any ε > 0. Given a nonzero vector v ∈ Rd, define Πv(K) to be the minimum slab defined by two
hyperplanes that enclose K and are orthogonal to v. Define the directional width of K with respect to
v, widthv(K), to be the perpendicular distance between these hyperplanes. Let Πv,ε(K) be the central
expansion of Πv(K) by a factor of 1 + ε, and define Kε to be the intersection of these expanded slabs over
all unit vectors v. It can be shown that for any v, widthv(Kε) = (1+ε) widthv(K). An ε-approximation of
K is any set K ′ (which need not be convex) such that K ⊆ K ′ ⊆ Kε. This defines an outer approximation.
It is also possible to define an analogous notion of inner approximation in which each directional width is
no smaller than 1− ε times the true width. Our results can be extended to either type of approximation.

A related notion studied extensive in the literature is that of ε-kernels. Given a discrete point set S in
Rd, an ε-kernel of S is any subset Q ⊆ S such that conv(Q) is an inner ε-approximation of conv(S) [4].
It is well known that O(1/ε(d−1)/2) points are sufficient and sometimes necessary in an ε-kernel. Kernels
efficiently approximate the convex hull and as such have been used to obtain fast approximation algorithms
to several problems such as diameter, minimum width, convex hull volume, minimum enclosing cylinder,
minimum enclosing annulus, and minimum-width cylindrical shell [4, 5].

In the ε-approximate version of convex intersection, we are given two convex bodies A and B and
a parameter ε > 0. If A ∩ B 6= ∅, then the answer is “yes.” If Aε ∩ Bε = ∅, then the answer is “no.”
Otherwise, either answer is acceptable. The ε-approximate polytope intersection problem is defined as
follows. A collection of two or more convex polytopes in Rd are individually preprocessed (with knowledge
of ε). Given any two preprocessed polytopes, A and B, the query determines whether A and B intersect
approximately. In general, the query algorithm can be applied to any affine transformation of the
preprocessed polytopes.

Theorem 1. Given a parameter ε > 0 and two polytopes A,B ⊂ Rd each of size n (given either using a
point or halfspace representation), we can independently preprocess each polytope into a data structure
in order to answer ε-approximate polytope intersection queries with query time O(polylog 1

ε), storage

O(1/ε(d−1)/2), and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α), where α is an arbitrarily small positive

constant.

The space is nearly optimal in the worst case because there is a lower bound of Ω(1/ε(d−1)/2) on the
worst-case bit complexity of representing an ε-approximation of a polytope [11].

2

⊕

=

A B

A⊕B

⊕

=

A −A

A⊕−A

w

w

(a) (b)

Figure 1: Minkowski sum and its relationship to width.

1.2 Minkowski Sum

Given two convex bodies A,B ⊂ Rd, the Minkowski sum A⊕B is defined as {p+ q : p ∈ A, q ∈ B} (see
Figure 1(a)). Minkowski sums have found numerous applications in motion planning [7,31], computer-aided
design [44], computational biology [40], satellite layout [15], and image processing [35]. Minkowski sums
have also been well studied in the context of discrete and computational geometry [1, 3, 29,32,43].

It is well known that in dimension d ≥ 3, the number of vertices in the Minkowski sum of two polytopes
can grow as rapidly as the product of the number of vertices in the two polytopes [7]. This has led to the
study of algorithms to compute approximations to Minkowski sums in R3 [2, 30, 44]. In this paper, we
show how to approximate the Minkowski sum of two convex polytopes in Rd in near-optimal time.

Theorem 2. Given a parameter ε > 0 and two polytopes A,B ⊂ Rd each of size n (given either using
a point or halfspace representation), it is possible to construct an ε-approximation of A ⊕ B of size
O(1/ε(d−1)/2) in O(n log 1

ε + 1/ε(d−1)/2+α) time, where α is an arbitrarily small positive constant.

The output representation can be either point-based or halfspace-based, irrespective of the input
representations.

1.3 Width

Define the directional width of a set S of n points to be the directional width of conv(S). The width
of S is the minimum over all directional widths. The maximum over all directional widths is equal
to the diameter of S. Both problems can be approximated using the ε-kernel of S. After successive
improvements [4,6,8,14,18], algorithms to compute ε-kernels and to ε-approximate the diameter in roughly
O(n + 1/εd/2) time have been independently discovered by Chan [19] and the authors [9]. Somewhat
surprisingly, these works offer no improvement to the running time to approximate the width [4,17,18,28,45],
which Chan [19] posed as an open problem. The fastest known algorithms date from over a decade ago
and take roughly O(n+ 1/εd−1) time [17,18].

Agarwal et al. [2] showed that the width of a convex body K is equal to the minimum distance from
the origin to the boundary of the convex body K ⊕ (−K) (see Figure 1(b)). Using Theorem 2, we can
approximate the width by computing an ε-approximation of K ⊕ (−K) represented as the intersection of
halfspaces and then determining the closest point to the origin among all bounding hyperplanes. The
following presents this result.

Theorem 3. Given a set S of n points in Rd and an approximation parameter ε > 0, it is possible to
compute an ε-approximation to the width of S in O(n log 1

ε + 1/ε(d−1)/2+α) time, where α is an arbitrarily
small positive constant.

3

1.4 Techniques

Our algorithms and data structure are based on a data structure defined by a hierarchy of Macbeath
regions [9,11], which answers approximate directional width queries in polylogarithmic time. First, we
show how to use this data structure as a black box to answer approximate polytope intersection queries
by transforming the problem to a dual setting and performing a multidimensional convex minimization.
Next, we show how to use approximate polytope intersection queries to compute ε-approximations of the
Minkowski sum. The approximation to the width follows directly.

Since we only access the input polytopes through a data structure for approximate directional width
queries, our results apply in much more general settings. For example, we could answer in polylogarithmic
time whether the Minkowski sum of two polytopes (preprocessed independently) approximately intersects
a third polytope. Our techniques are also amenable to other polytope operations such as intersection and
convex hull of the union, as long as the model of approximation is defined accordingly.

The preprocessing time of the approximate directional width data structure we use is O(n log 1
ε +

1/ε(d−1)/2+α), for arbitrarily small α > 0. If this preprocessing time is reduced in the future, the complexity
of our algorithms becomes equal to the preprocessing time plus O((1/ε(d−1)/2) polylog 1

ε).

2 Preliminaries

In this section we present a number of results, which will be used throughout the paper. The first provides
three basic properties of Minkowski sums. The proof can be found in standard sources on Minkowski
sums (see, e.g., [41]).

Lemma 4. Let A,B ⊂ Rd be two (possibly infinite) sets of points. Then:

(a)A ∩B 6= ∅ if and only if O ∈ A⊕ (−B), where O is the origin.

(b) conv(A⊕B) = conv(A)⊕ conv(B).

(c) For all nonzero vectors v, widthv(A⊕B) = widthv(A) + widthv(B).

Next, we recall a recent result of ours on answering directional width queries approximately [9], which
we will use as a black box later in this paper. Given a set S of n points in a constant dimension d and
an approximation parameter ε > 0, the answer to the approximate directional width query for a nonzero
query vector v consists of a pair of points p, q ∈ S such that widthv({p, q}) ≥ (1− ε) widthv(S).

Lemma 5. Given a set S of n points in Rd and an approximation parameter ε > 0, there is a data structure
that can answer ε-approximate directional width queries with query time O(log2 1

ε), space O(1/ε(d−1)/2),

and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α).

2.1 Fattening

Existing algorithms and data structures for convex approximation often assume that the bodies have
been fattened through an appropriate affine transformation. In the context of multiple bodies, this is
complicated by the fact that different fattening transformations may be needed for the two bodies or their
Minkowski sum. In this section we explore this issue.

Consider a convex body K in d-dimensional space Rd. Given a parameter 0 < γ ≤ 1, we say
that K is γ-fat if there exist concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and
radius(B)/ radius(B′) ≥ γ. We say that K is fat if it is γ-fat for a constant γ (possibly depending on d,
but not on ε or K). For a centrally symmetric convex body C, the body obtained by scaling C about its
center by a factor of λ is called the λ-expansion of C.

Let K be a convex body. We say that a convex body C is a λ-sandwiching body for K if C is centrally
symmetric and C ⊆ K ⊆ C ′, where C ′ is a λ-expansion of C. John [34] proved tight bounds for the
constant λ of a λ-sandwiching ellipsoid. This ellipsoid is referred to as the John ellipsoid.

Lemma 6. For every convex body K in Rd, there exists a d-sandwiching ellipsoid. Furthermore, if K is
centrally symmetric, there exists a

√
d-sandwiching ellipsoid.

4

It is an immediate consequence of this lemma that for any convex body K there exists an affine
transformation T such that T (K) is (1/d)-fat. Any affine transformation that maps the John ellipsoid
into a Euclidean ball will do. The following lemma generalizes this to hyperrectangles (see also Barequet
and Har-Peled [14]).

Lemma 7. For every convex body K in Rd, there exists a (d3/2)-sandwiching hyperrectangle.

Proof. Let E denote the d-sandwiching ellipsoid for K, described in Lemma 6. By elementary geome-
try, there exists a

√
d-sandwiching hyperrectangle R for E. We claim that R is a (d3/2)-sandwiching

hyperrectangle for K. To prove this claim, observe that R ⊆ E ⊆ R′ and E ⊆ K ⊆ E′, where R′ is the√
d-expansion of R and E′ is the d-expansion of E. Letting R′′ denote the d-expansion of R′, it is easy to

see that E′ ⊆ R′′. It follows that R ⊆ E ⊆ K ⊆ E′ ⊆ R′′. Since R′′ is the d-expansion of R′ and R′ is
the
√
d-expansion of R, it follows that R′′ is the (d3/2)-expansion of R. This completes the proof.

Next, let us consider fattening in the context of multiple bodies. The next two lemmas follow from
elementary geometry and properties of Minkowski sums.

Lemma 8. Let C1 and C2 be λ-sandwiching bodies for K1 and K2, respectively. Then C1 ⊕ C2 is a
λ-sandwiching body for K1 ⊕K2.

Lemma 9. Let K be a convex body. Given a λ-sandwiching polytope for K of constant complexity, we
can compute a γ-fattening affine transformation T for K in constant time, where γ = 1/(λ

√
d).

Proof. Let C denote the given λ-sandwiching polytope for K. Recalling that λ-sandwiching polytopes are
centrally symmetric, by Lemma 6 we can find a

√
d-sandwiching ellipsoid E for C. As C has constant

complexity, we can determine E in O(1) time. In O(1) time, we can also find the affine transformation
T that converts E into a Euclidean ball. We claim that T (K) is γ-fat for γ = 1/(λ

√
d). To prove this

claim, observe that E ⊆ C ⊆ E′ and C ⊆ K ⊆ C ′, where E′ is the
√
d-expansion of E and C ′ is the

λ-expansion of C. Letting E′′ denote the λ-expansion of E′, it is easy to see that C ′ ⊆ E′′. It follows that
E ⊆ C ⊆ K ⊆ C ′ ⊆ E′′. Since E′ is the

√
d-expansion of E and E′′ is the λ-expansion of E′, it follows

that E′′ is the λ
√
d-expansion of E. Thus T (K) is contained between Euclidean balls T (E) and T (E′′),

whose radii differ by a factor of λ
√
d, which proves the lemma.

We conclude by showing that we can maintain a small amount of auxiliary information for any
collection of convex bodies in order to determine the fattening transformation for the Minkowski sum of
any two members of this library. We refer to the data structure for approximate directional width queries
from Lemma 5 together with the additional information to determine the fattening transformation as the
augmented data structure for approximate directional width queries.

Lemma 10. Consider any finite collection of convex polytopes in Rd, and let γ = 1/d2. It is possible
to store information of constant size with each polytope such that in constant time we can compute a
γ-fattening affine transformation for the Minkowski sum of any two polytopes from the collection. This
information can be computed in time proportional to the size of the input polytope.

Proof. At preprocessing time, we store the λ-sandwiching hyperrectangles Ri for each Ki, where λ = d3/2.
By Lemma 7, such hyperrectangles exist and they can be computed in time proportional to the size of the
input polytope [23].

Suppose we want to compute a γ-fattening affine transformation for K ′i⊕K ′j , where K ′i and K ′j are the
result of applying (possibly different) affine transformations to Ki and Kj , respectively. Let C ′i and C ′j be
the polytopes of constant complexity obtained by applying the corresponding affine transformations to Ri
and Rj , respectively. Clearly, C ′i and C ′j are λ-sandwiching polytopes for K ′i and K ′j , respectively. Thus,
by Lemma 8, C ′i ⊕ C ′j is a λ-sandwiching polytope for K ′i ⊕K ′j . Note that this polytope has constant
complexity and can be computed in constant time. Applying Lemma 9, we can use this polytope to
compute a γ-fattening affine transformation for K ′i⊕K ′j in constant time, where γ = 1/(λ

√
d) = 1/d2.

The previous lemma holds more generally even when each of the polytopes are subject to any
non-singular affine transformation and to the Minkowski sum of a constant number of polytopes.

5

2.2 Projective Duality and Width

Our algorithm for approximating the directional width of a point set is based on a projective dual
transformation, which maps points into hyperplanes and vice versa. Each primal point p = (p1, . . . , pd) ∈ S
is mapped to the dual hyperplane p∗ : xd = p1x1 + · · ·+pd−1xd−1−pd. Each primal hyperplane is mapped
to a dual point in the same manner. This dual transformation has several well-known properties [24]. For
example, the points in the lower convex hull of S map to the hyperplanes in the upper envelope.

Let H be a set of n hyperplanes in Rd. Given a point r ∈ Rd−1, the thickness of H at r, denoted
thickr(H) is defined as follows. Given r ∈ Rd−1 and t ∈ R, let (r, t) denote the point in Rd resulting by
concatenating r and t. For the sake of illustration, we think of the d-th coordinate axis as being the
vertical axis. Let r′ = (r, t1) and r′′ = (r, t2). We define thickr(H) as the maximum difference t2 − t1
for points r′, r′′ in the hyperplanes in H. In other words, the thickness is the vertical distance between
the intersection of the vertical line defined by r with the upper and lower envelopes of H. The following
relates width and thickness.

Lemma 11. Consider two points p, q ∈ Rd and a vector v = (v1, . . . , vd−1,−1). Let p∗, q∗ denote the
dual hyperplanes and v1,d−1 = (v1, . . . , vd−1). We have

thickv1,d−1
({p∗, q∗}) = ‖v‖widthv({p, q}).

Proof. Given vectors u and v, let u ·v denote the standard inner product. Assume without loss of generality
that p · v ≥ q · v. Clearly, v is nonzero, so widthv({p, q}) = (p · v − q · v)/‖v‖. Let p = (p1, . . . , pd) and
q = (q1, . . . , qd). The dual hyperplanes are

p∗ : xd = p1x1 + · · ·+ pd−1xd−1 − pd and q∗ : xd = q1x1 + · · ·+ qd−1xd−1 − qd.

If we set x1, . . . , xd−1 = v1,d−1 we have t2 = (p1, . . . , pd−1) ·v1,d−1−pd and t1 = (q1, . . . , qd−1) ·v1,d−1− qd.
Therefore

thickv1,d−1
(H) = t2 − t1

= (p1, . . . , pd−1) · v1,d−1 − pd − ((q1, . . . , qd−1) · v1,d−1 − qd)
= p · v − q · v
= ‖v‖widthv({p, q}).

3 Approximate Convex Intersection

In this section, we will prove Theorem 1 for the case when the input polytopes are represented by points.
Assume that we are given two polytopes A and B in the point representation. The objective is to
preprocess A and B individually such that we can efficiently answer approximate intersection queries for
A and B (or more generally for affine transformations of A and B).

Given a convex body K, ε > 0, and a point p, an ε-approximate polytope membership query is defined
as follows. If p ∈ K, the answer is “yes,” if p /∈ Kε, the answer is “no,” and otherwise, either answer
is acceptable. Our strategy to answer approximate intersection queries is based on reducing them to
approximate polytope membership queries. This reduction is presented in the following lemma, which is a
straightforward generalization of Lemma 4(a) to an approximate context. The proof follows from standard
algebraic properties of Minkowski sums and the observation that Kε can be expressed as K ⊕ ε

2 (K ⊕−K).

Lemma 12. Let A,B ⊂ Rd be two polytopes and ε > 0. Determining the ε-approximate intersection of A
and B is equivalent to determining the ε-approximate membership of O ∈ A⊕ (−B).

Proof. We begin by establishing the useful identity Aε⊕Bε = (A⊕B)ε. By basic properties of Minkowski
sums (commutativity and distributivity) we have

Aε ⊕Bε =
(
A⊕ ε

2
(A⊕−A)

)
⊕

(
B ⊕ ε

2
(B ⊕−B)

)
= (A⊕B)⊕ ε

2

(
(A⊕B)⊕−(A⊕B)

)
= (A⊕B)ε,

6

widthv(S)

O
O∗

x1, . . . , xd−1 = v1, . . . , vd−1

thickv1,...,vd−1
(S∗)

y

−yF

v

(a) (b)

Figure 2: (a) Primal problem of determining if O ∈ conv(S). (b) Dual problem of determining if the
horizontal hyperplane O∗ is between the upper and lower envelopes.

as desired.
Returning to the proof, if A ∩ B 6= ∅ then by Lemma 4(a), O ∈ A ⊕ (−B), and the approximate

membership query returns “yes,” as desired. If Aε ∩Bε = ∅ then by Lemma 4(a) we have O /∈ Aε⊕−(Bε)
and by the above identity and the easy fact that −(Bε) = (−B)ε, we have O /∈ (A⊕ (−B))ε, implying
that the approximate membership query returns “no.”

The previous lemma relates approximate polytope intersection with an approximate membership of
the origin in a polytope (Figure 2(a)). Determining whether the origin lies within the convex hull of a set
of points S is a classic problem in computational geometry, which can be solved by linear programming.
However, we are interested in a faster approximate solution that does not compute S explicitly. We
cannot afford to preprocess an approximate polytope membership data structure for A⊕ (−B) for each
pair A and B, since the number of such pairs is quadratic in the number of input polytopes. Instead,
we preprocess each input polytope individually, and we show next how to efficiently answer approximate
polytope membership queries for A⊕(−B) by using augmented data structures for approximate directional
width queries for A and B as black boxes.

Lemma 13. Given augmented data structures for answering ε-approximate directional width queries for
polytopes A and B, we can answer ε-approximate membership queries for A⊕ (−B) using O(polylog 1

ε)
queries to these data structures.

Proof. Without loss of generality, we may translate space so that the query point coincides with the origin
O. Let K = A⊕ (−B), and let S be K’s vertex set. (Note that K and S are not explicitly computed.)

The problem of determining whether O ∈ K is invariant to scaling and rotation about the origin. It
will be helpful to perform some affine transformations that will guarantee certain properties for K. First,
we apply Lemma 10 to fatten K and then apply a uniform scaling about the origin so that K’s diameter
is Θ(1). By fatness, K has a λ-sandwiching ball of radius r = Θ(1). If the origin either lies within the
inner ball or outside the outer ball, then the answer is trivial. Otherwise, let ∆ = 2λr be the diameter
of the outer ball. We may apply a rotation about the origin so that the center of this ball lies on the
positive xd axis at a point (0, . . . , 0, β). Again, this scaling and rotation can be computed in constant
time using the augmented information. It follows that the coordinates of the points of S have absolute
values at most ∆ = Θ(1).

In summary, there exists an affine transformation computable in constant time such that after applying
this transformation, the query point lies at the origin, K = conv(S) is sandwiched between two concentric
balls of constant radii centered at c = (0, . . . , 0, β), where 0 < β ≤ ∆ = O(1), and K’s vertex set S is
contained within [−∆,∆]d. It is an immediate consequence that widthv(K) = Θ(1) for all directions v,
and hence it suffices to answer the membership query to an absolute error of Θ(ε).

Lemma 4(c) implies that we can answer ε-approximate width queries for K as the sum of two ε-
approximate width queries to A and B. Therefore, our goal is to determine approximately if O ∈ K using
only approximate width queries to A and B. In order to do this, we look at the projective dual problem in
which each point p = (p1, . . . , pd) ∈ S is mapped to the hyperplane p∗ : xd = p1x1 + · · ·+ pd−1xd−1 − pd.
Let S∗ denote the corresponding set of hyperplanes. The primal problem O ∈ K is equivalent to the dual

7

(a) (b)

1 2
3

4
5

5

4

3

2

1

0x1 x4x2 xm=x3

f

fε
ε

g

f

Figure 3: (a) One-dimensional convex minimization. (b) Higher-dimensional convex minimization.

problem of determining whether the horizontal hyperplane O∗ : xd = 0 is sandwiched between the upper
and lower envelopes of S∗ (Figure 2(b)). Since the point c lies vertically above the origin and within K’s
interior, it follows that O∗ cannot intersect the lower envelope. Therefore, it suffices to test whether O∗

intersects the upper envelope.
The dual problem can be solved exactly by computing the minimum value y of the xd-coordinate in

the upper envelope and testing whether y > 0. In the primal, the value of y corresponds to the negated xd-
coordinate of the intersection of a facet F of the lower convex hull of K and a vertical line passing through
the origin (see Figure 2). Let F ’s supporting hyperplane be denoted by xd = w1x1 + · · ·+wd−1xd−1 −wd.
Since K is sandwiched between two concentric balls of constant radii whose common center lies on this
vertical line, it follows from simple geometry that this supporting hyperplane cannot be very steep. In
particular, there exists α = O(1) such that wi ∈ [−α, α], for i = 1, . . . , d − 1. In the dual, this means
that the minimum value y is attained at a point whose first d− 1 coordinates all lie within [−α, α]. In
approximating y, we will apply directional width queries only for directional vectors v = (v1, . . . , vd) whose
first d− 1 coordinates lie within [−α, α] and vd = −1. Thus, ‖v‖ = O(1).

By Lemma 11, the duals of two points p, q ∈ S returned by an exact directional width query widthv(K)
in the primal for a vector v = (v1, . . . , vd−1,−1) correspond to the two dual hyperplanes in the upper
and lower envelopes of S∗ that intersect the vertical line xi = vi for i = 1, . . . , d − 1. Since queries
are only applied to directions v where ‖v‖ = O(1) and since widthv(K) = Θ(1) for all directions v, it
follows from Lemma 11 that a relative error of ε in the directional width implies an absolute error of
O(ε) in the corresponding thickness. We can think of the upper envelope of S∗ as defining the graph of a
convex function over the domain [−α, α]d−1. Since S ⊂ [−∆,∆]d, the slopes of the hyperplanes in S∗

are similarly bounded, and therefore this function has bounded slope. It follows that, for an appropriate
ε′ = Θ(ε), we can compute this function to an absolute error of ε at any (v1, . . . , vd−1) by performing
an (ε′)-approximate directional width query on K for v = (v1, . . . , vd−1,−1). To complete the proof, it
suffices to show that with O(polylog 1

ε) such queries, it is possible to compute an absolute ε-approximation
to y. We do this in the next section.

3.1 Convex Minimization

The following lemma shows how to use binary search to solve a one-dimensional convex minimization
problem approximately (see Figure 3(a)).

Lemma 14. Let a, b ∈ R and ε ∈ R+ be real parameters. Let f : [a, b] → R be a convex function with
bounded slope and fε : [a, b]→ R be a function with |f(x)− fε(x)| ≤ ε for all x ∈ [a, b]. Let x∗ ∈ [a, b] be
the value of x that minimizes f(x). It is possible to determine a value x′ with f(x′)− f(x∗) = O(ε) after
O(log((b− a)/ε)) evaluations of fε(·) and no evaluation of f(·).

Proof. First, we present the recursive algorithm used to determine the value x′. If b− a < ε, then since

8

the function has bounded slope, we simply return x′ = a, as a valid answer.
Otherwise, we start by trisecting the interval [a, b] and evaluate fε(x) at the four endpoints x1, x2, x3, x4

of the subintervals (see Figure 3(a)). Let m denote the value i that minimizes fε(xi), breaking ties
arbitrarily. To simplify the boundary cases, let x0 = a and x5 = b. We then invoke our algorithm
recursively on the interval [xm−1, xm+1] and store the value returned as x′′. We return the value x among
the two values xm, x

′′ that minimizes fε(x).
Since the length of the interval reduces by at least one third at each iteration, the number of recursive

calls and therefore evaluations of fε(·) is O(log((b− a)/ε)). Next, we show that f(x′)− f(x∗) = O(ε). By
the convexity of f we have

f(x) ≥ f(xm+1) + 3(x− xm+1)(f(xm+1)− f(xm))/(b− a), for x ≥ xm+1.

Using that |f(x)− fε(x)| ≤ ε, we have

f(x) ≥ fε(xm+1)− ε+ 3(x− xm+1)(fε(xm+1)− fε(xm)− 2ε)/(b− a), for x ≥ xm+1.

Since fε(xm) ≤ fε(xm+1), we have

f(x) ≥ fε(xm)− ε− 6ε(x− xm+1)/(b− a), for x ≥ xm+1.

For x inside the interval [a, b] we have |x− xm+1| ≤ b− a, and therefore

f(x) ≥ fε(xm)− 7ε, for xm+1 ≤ x ≤ b.
The same argument is used to bound the case of a ≤ x ≤ xm−1, obtaining

f(x) ≥ fε(xm)− 7ε, for x /∈ [xm−1, xm+1].

Either the minimum of f(x) is inside the interval [xm−1, xm+1] or not. If it is not, then the previous
inequality shows that fε(xm) provides a good approximation, regardless of the value returned in the
recursive call. If the minimum is inside the interval [xm−1, xm+1], then the recursive call will provide a
value result by an inductive argument.

We are now ready to extend the result to arbitrary dimensions.

Lemma 15. Let a, b ∈ R and ε ∈ R+ be real parameters. Let f : [a, b]d → R for a constant dimension d
be a convex function with bounded slope and fε : [a, b]d → R be a function with |f(x)− fε(x)| ≤ ε for all
x ∈ [a, b]d. Let x∗ ∈ [a, b]d be the value of x that minimizes f(x). It is possible to determine a value x′

with f(x′)− f(x∗) = O(ε) after O(logd((b− a)/ε)) evaluations of fε(·) and no evaluation of f(·).

Proof. The minimum f(x∗) can be written as

f(x∗) = min
x∈[a,b]d

f(x) = min
x1∈[a,b]

min
x̃∈[a,b]d−1

f(x1, x̃).

Note that if f(x) is a convex function with bounded slope, then so is the function g : [a, b] → R (see
Figure 3(b)) defined as

g(x1) = min
x̃∈[a,b]d−1

f(x1, x̃).

The proof is based on induction on the dimension d. Since d is a constant, the number of induction
steps is also a constant. The base case of d = 1 follows from Lemma 14. By the induction hypothesis, we
can solve the (d− 1)-dimensional instance to obtain a function g′(x1) such that

|g(x1)− g′(x1)| = O(ε).

Using Lemma 14 for the function g′(·), we obtain a value x′ with f(x′)− f(x∗) = O(ε).
For the number of function evaluations t(d) for a given dimension d we have

t(1) = O(log((b− a)/ε)) and

t(k) = t(1) · t(k − 1).

The recurrence easily solves to the desired

t(d) = O(logd((b− a)/ε)).

By applying Lemma 15 to the dual problem defined in the proof of Lemma 13 (where f is the graph
of the upper envelope of S∗ and [a, b] = [−α, α]) with the augmented data structure from Lemma 5, we
obtain Theorem 1 for the case when the input polytopes are represented by points. We will consider the
case when the input polytopes are represented by halfspaces at the end of the next section.

9

K

√
ε

D

w′w

√
ε

D

w′w

K

(a) (b)

Figure 4: (a) Dudley’s and (b) Bronshteyn and Ivanov’s polytope approximations.

4 Minkowski Sum Approximation

In this section, we will prove Theorems 2 and 3, as well as Theorem 1 for the case when the input
polytopes are represented by halfspaces. Assume that we are given two polytopes A and B in the point
representation, and we have computed the augmented approximate directional width data structures from
Lemma 5 for each polytope. The objective is to obtain an ε-approximation of the Minkowski sum A⊕B
of size O(1/ε(d−1)/2) using these data structures. Our approach is to fatten A⊕B using Lemma 10 and
then apply Dudley’s construction [27] in order to obtain an approximation with O(1/ε(d−1)/2) halfspaces.
For completeness, we start by describing Dudley’s algorithm.

Let K ⊂ [−1, 1]d be a fat polytope of constant diameter. Dudley’s algorithm obtains an ε-approximation
represented by halfspaces as follows. Let D be a ball of radius 2

√
d centered at the origin. (Note that

K ⊂ D.) Place a set W of Θ(1/ε(d−1)/2) points on the surface of D such that every point on the surface
of D is within distance O(

√
ε) of some point in W . For each point w ∈W , let w′ be its nearest point on

the boundary of K. We call these points samples. For each sample point w′, take the supporting halfspace
passing through w′ that is orthogonal to the vector from w′ to w. The approximation is defined as the
intersection of these halfspaces (see Figure 4(a)).

Bronshteyn and Ivanov [16] presented a similar construction. Instead of approximating K by halfspaces,
Bronshteyn and Ivanov’s construction approximates K as the convex hull of the aforementioned set of
samples1 (see Figure 4(b)). In both constructions it is possible to tune the constant factors so that closest
point queries need only be computed to within an absolute error of Θ(ε).

An approximate closest point query between a polytope K and a point p within constant distance
from K can be reduced to computing an ε-approximation to the smallest radius ball centered at p that
intersects K. This can be solved through binary search on the radius of this ball, where each probe involves
determining whether K intersects a ball of some radius centered at p. Notice that the data structure for
approximate polytope intersection from Section 3 only accesses the bodies through approximate directional
width queries, besides the initial fattening transformation. By Lemma 4(c), given two preprocessed bodies
A and B, we can answer directional width queries on A⊕B through directional width queries on A and B
individually. (In the case of a ball, no data structure is required.) Therefore, we can test intersection with
a Minkowski sum A⊕B, as long as we have augmented approximate directional width data structures for
both A and B.

In order to establish Theorem 2 for the case when the input polytopes are represented by points,
we apply the aforementioned binary search to simulate Dudley’s construction. Each sample is obtained
after O(log 1

ε) ε-approximate polytope intersection queries. The total running time is dominated by the

1Dudley’s construction yields an outer approximation and Bronshteyn and Ivanov’s yields inner approximation, but it is
possible to convert both to the other type through standard techniques. For details, see Lemma 2.8 of the full version of [9].

10

preprocessing time of Lemma 5. Note that the output polytope may be represented by either points or
halfspaces according to whether we use Dudley’s or Bronshteyn and Ivanov’s algorithm. To show that the
input polytopes may be represented by halfspaces, we show how to efficiently convert between the two
representations.

Lemma 16. Given an approximation parameter ε > 0 and a polytope K ⊂ Rd of size n (given either
using a point or halfspace representation), we can obtain an ε-approximation of size O(1/ε(d−1)/2) (in
either representation, independent of the input representation) in O(n log 1

ε + 1/ε(d−1)/2+α) time, where
α > 0 is an arbitrarily small constant.

Proof. The case when the input is represented by points is a trivial case of Theorem 2, where B = {O}.
For the alternative case, it suffices to obtain an ε-approximation of the polar polytope after fattening.
(For details see Lemma 2.9 of the full version of [9].)

We remind the reader that Agarwal et al. [2] showed that the width of a convex body K is equal to the
minimum distance from the origin to the boundary of the convex body K ⊕ (−K). To obtain Theorem 3,
we compute Dudley’s approximation of K ⊕ (−K) and then we determine the closest point to the origin
among the O(1/ε(d−1)/2) bounding hyperplanes of the approximation.

References

[1] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of
Minkowski sums. Comput. Geom. Theory Appl., 21(1):39 – 61, 2002.

[2] P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Penetration depth of two
convex polytopes in 3D. Nordic J. of Computing, 7(3):227–240, 2000.

[3] P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random Minkowski sums and
network vulnerability analysis. Discrete Comput. Geom., 52(3):551–582, 2014.

[4] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J.
Assoc. Comput. Mach., 51:606–635, 2004.

[5] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In
J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry. MSRI
Publications, 2005.

[6] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related
problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189–201, 1992.

[7] B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM
J. Comput., 26(6):1785–1803, 1997.

[8] S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search,
Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos. Comput. Geom.,
pages 416–425, 2014.

[9] S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related
problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017. URL: https:
//arxiv.org/abs/1604.01175.

[10] S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating
polytopes. Discrete Comput. Geom., 58(4):849–870, 2017.

[11] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc.
28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.

[12] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J.
Comput., 47(1):1–51, 2018.

11

https://arxiv.org/abs/1604.01175
https://arxiv.org/abs/1604.01175

[13] L. Barba and S. Langerman. Optimal detection of intersections between convex polyhedra. In Proc.
26th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1641–1654, 2015.

[14] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a
point set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

[15] J.-D. Boissonnat, E. De Lange, and M. Teillaud. Minkowski operations for satellite antenna layout.
In Proc. 13th Annu. Sympos. Comput. Geom., pages 67–76, 1997.

[16] E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math.
J., 16:852–853, 1976.

[17] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width
annulus. Internat. J. Comput. Geom. Appl., 12:67–85, 2002.

[18] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput.
Geom. Theory Appl., 35(1):20–35, 2006.

[19] T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In
Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1–15, 2017.

[20] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J.
Comput., 21(4):671–696, 1992.

[21] B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc. 12th Annu. ACM
Sympos. Theory Comput., pages 146–153, 1980.

[22] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. Assoc.
Comput. Mach., 34:1–27, 1987.

[23] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in
fixed dimension. J. Algorithms, 21:579–597, 1996.

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer, 3rd edition, 2010.

[25] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp. Sci.,
27(3):241–253, 1983.

[26] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra—A
unified approach. In Proc. Internat. Colloq. Automata Lang. Prog., pages 400–413, 1990.

[27] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx.
Theory, 10(3):227–236, 1974.

[28] C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms
for computational metrology. In Proc. Eighth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
121–130, 1997.

[29] E. Fogel, D. Halperin, and C. Weibel. On the exact maximum complexity of Minkowski sums of
polytopes. Discrete Comput. Geom., 42(4):654–669, 2009.

[30] X. Guo, L. Xie, and Y. Gao. Optimal accurate Minkowski sum approximation of polyhedral
models. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and
Methodological Issues, pages 179–188, 2008.

[31] D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman, J. O’Rourke,
and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics
and its Applications. CRC Press, 2017.

[32] S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of a single face
of a Minkowski sum. In Proc. Seventh Canad. Conf. Comput. Geom., pages 91–96, 1995.

12

[33] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers & Graphics,
25(2):269–285, 2001.

[34] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, pages 187–204. Interscience Publishers, Inc., New
York, 1948.

[35] A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation of pips.
Computers & graphics, 16(1):107–115, 1992.

[36] M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proc. of IMA
conference on mathematics of surfaces, volume 1, pages 602–608, 1998.

[37] D. M. Mount. Geometric intersection. In J. E. Goodman, J. O’Rourke, and C. D. Tóth, editors,
Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications. CRC
Press, 2017.

[38] D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theo. Comp.
Sci., 7(2):217–236, 1978.

[39] J. O’Rourke. Computational geometry in C. Cambridge University Press, 1998.

[40] L. Pachter and B. Sturmfels. Algebraic statistics for computational biology, volume 13. Cambridge
University Press, 2005.

[41] R. Schneider. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press, 1993.

[42] M. I. Shamos. Geometric complexity. In Proc. Seventh Annu. ACM Sympos. Theory Comput., pages
224–233, 1975.

[43] H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum of polytopes.
Discrete Comput. Geom., 40(3):469–479, 2008.

[44] G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral models.
Graphical Models, 68(4):343–355, 2006.

[45] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting and
kinetic data structures using coresets. Algorithmica, 52(3):378–402, 2008.

13

	Introduction
	Convex Intersection
	Minkowski Sum
	Width
	Techniques

	Preliminaries
	Fattening
	Projective Duality and Width

	Approximate Convex Intersection
	Convex Minimization

	Minkowski Sum Approximation
	References

