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ABSTRACT

This paper introduces a novel energy minimization method,

namely iterated cross entropy with partition strategy (ICEPS),

into the Markov random field theory. The solver, which is

based on the theory of cross entropy, is general and stochas-

tic. Unlike some popular optimization methods such as be-

lief propagation (BP) and graph cuts (GC), ICEPS makes no

assumption on the form of objective functions and thus can

be applied to any type of Markov random field (MRF) mod-

els. Furthermore, compared with deterministic MRF solvers,

it achieves higher performance of finding lower energies be-

cause of its stochastic property. We speed up the original

cross entropy algorithm by partitioning the MRF site set and

assure the effectiveness by iterating the algorithm. In the ex-

periments, we apply ICEPS to two MRF models for medical

image segmentation and show the aforementioned advantages

of ICEPS over other popular solvers such as iterated condi-

tional modes (ICM) and GC.

Index Terms— Markov random fields, energy minimiza-

tion, MRF solvers, cross entropy, image segmentation

1. INTRODUCTION

Markov random field (MRF) theory has interested a lot of re-

searchers in computer vision, image processing, pattern recog-

nition, artificial intelligence and so on. The reasons why MRF

modeling has so many successful applications in these areas

are that it can easily incorporate spatial interaction and con-

vert a problem in image computing into a functional optimiza-

tion problem. This conversion is usually carried out by means

of maximum a posteriori (MAP) or identically, energy mini-

mization via Gibbs random fields.

The MRF energy function contains the local evidence (like-

lihood energy) of each site and the interaction (prior energy)

between neighboring sites of MRF. We need to minimize the

energy function in order to obtain the resulting MRF config-

uration. However, it remains an important open problem in

MRF theory to optimize the objective function. Due to the

large number of pixels in images, the configuration space of

MRF in image analysis is huge. Actually, it was proved that

obtaining the global optimum of an arbitrary MRF objective

function is NP-hard [1]. Therefore, it has been an active re-

search topic to design a ”good” solver for MRF models over

the past two decades. The goodness of a solver lies in whether

it can efficiently find a local optimum which is as ”global” as

possible (i.e. the lower energy the solver can find, the better

the solver is) [2, 1].

The work of Kirkpatrick et al. [3], who proposed simu-

lated annealing (SA), is known to be one of the earliest ef-

forts to design solvers for MRF energy minimization. An-

other pioneering work was done by Besag [4], where the it-

erated conditional modes (ICM) was presented. After those

two methods, quite a few solvers were introduced [2], such

as mean field approximation (MFa), relaxation labeling (RL),

graduated non-convexity (GNC), etc. More recently two effi-

cient and fairly effective solvers, belief propagation (BP) [5]

and graph cuts (GC) [1], have been proposed. These two

solvers are now often used for MRF models because they

can find ”global” optima within a rather large neighborhood

while maintaining acceptable time complexity. However, BP

and GC are not applicable to all types of objective functions.

They obtain their effectiveness at the cost of objective func-

tion form restrictions. These limitations may considerably

confine the usage of the two popular solvers.

In this paper, we propose a simple stochastic solver for

MRF modeling, called iterated cross entropy with partition

strategy (ICEPS). This idea is originated from the field of op-

erations research to simulate rare events [6]. This work com-

bines the idea of cross entropy (CE) with MRF theory and

applies the method to MRF models that can be used in image

segmentation, which is an important topic in image analy-

sis. The ICEPS solver is a general and stochastic optimiza-

tion method that can be applied to any kind of MRF formu-

lation, unlike BP and GC. Moreover, as a stochastic method,

ICEPS tends to find more global optimum than deterministic

solvers like BP, GC and ICM. This is supported by a series

of experiments on synthetic and clinical image data, which

shows ICEPS is able to find lower energy value than GC and

ICM. Although stochastic, ICEPS is still efficient because it

attaches importance to the high performance part of the sam-

ples. In short, the contribution of this paper lies in that the

introduction of ICEPS into MRF theory offers a better choice

to approximately solve the NP-hard problem of minimizing
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MRF energy compared to some of the commonly-used exist-

ing solvers in terms of both effectiveness and generalization.

This paper is an extension of our previous work [7] and

the current work introduces two significant modifications to

considerably reduce the time complexities and to keep the ef-

fectiveness of the original pure CE algorithm.

2. THE OPTIMIZATION METHOD

Owing to its simplicity and effectiveness, the cross entropy

(CE) has many successful applications in operations research

and machine learning [8]. In this section, we extend the orig-

inal CE method to a simple stochastic solver for MRF mod-

eling, namely, iterated cross entropy with partition strategy

(ICEPS). Consider the following general energy minimiza-

tion problem in MRF modeling. Let F be the configuration

space of MRF, F , and f is one configuration of F . The energy

minimization of MRFs is formulated by

f∗ = arg min
f∈F

E(f), (1)

where E(·) is the energy function to be minimized and f∗

is the desired F configuration. ICEPS method associates an

estimation problem with the optimization problem (Eq. 1).

We suppose p(·;�v) is a family of discrete probability density

functions (pdf) on F and �v is its parameter. Let us estimate

the following probability

Pv(E(F ) ≤ e) =
∑

f

I{E(f)≤e}p(f ;�v), (2)

where I{event} is an indicator function, which is equal to

1 when the event is true otherwise 0, Pv is the probabil-

ity measure and F is a vector of configurations that has pdf

p(·;�v). This equation shows a way to estimate the probabil-

ity of the situation that the energy of one configuration in a

sequence of configurations is not larger than a threshold e. If

e = e∗ = minf∈F E(f) and p(·;�v) is a uniform density on

F , Eq. 1 and Eq. 2 are connected. Note that Pv(E(F ) ≤ e∗)
is typically 1/|F|, which is very small. This is similar to the

situation of rare event simulation. Thus, following [8] we can

borrow the idea of CE from rare event simulation to construct

a multi-level optimization approach for MRF energy, where

we generate a sequence of levels e1,e2,. . . ,eT and parameter

vectors v1,v2,. . . ,vT such that eT is close to the optimal e∗

and vT is the density that assigns high probability mass to the

configuration which corresponds to a low energy.

Suppose m is the size of the label space of the MRF model

and there are n sites altogether. We partition the n sites into

l subsets S1, . . . , Sl. The ICEPS solver for MRF labeling can

be described as follows.

——————————————————————–

ICEPS Algorithm for MRF energy minimization
——————————————————————–

1. Set p = 1. Iterate steps 2 to 4 until p = P . P is a prede-

fined positive integer.

2. For each site subset Sd, d = 1, . . . , l, repeat the following

steps from 3.1 to 3.5. |Sd| = r.

3.1. Set level t = 1 and the initial parameter vector �v0 =
{�v0,1, . . . , �v0,r}. Each �vt,i = {v1

t,i, . . . , v
m
t,i} is a vector

with m elements for site i.

3.2. Generate a sequence of samples F1, . . . , FN (F = {f1, . . . , fr}
is one MRF configuration) from the density p(·;�vt−1)
and compute the energy Ei(Fi) for every i ∈ {1, . . . , N}.
N is the number of samples.

3.3. Sort all the Ei(Fi) in a non-increasing order to {E1, . . . , EN}.
Then pick et = E�(1−ρ)N�.

3.4. Use the samples F1, . . . , FN to update �vt by

vj
t,i =

∑N
k=1 I{Ek(Fk)≤et}I{Fki=j}∑N

k=1 I{Ek(Fk)≤et}
, (3)

for i = 1, . . . , n and j = 1, . . . , m.

3.5. If et remains unchanged for several iterations, go to step

4; else, set t = t + 1 and go to step 3.1.

4. p = p + 1.

5. The combination of EN (FN ) for each site subset at the P -

th iteration is the estimated minimal MRF energy. The

corresponding configuration is embodied by the param-

eter vector �vT for every subset, where each element

vj
T,i assigns most probability mass to a preferable la-

bel among m labels for site i.

————————————————————-

Intuitively, among randomly-generated samples {F1, . . . , FN},
the ICEPS algorithm prefers those high performance ones whose

energy values are lower than a threshold et. It calculates the

occurrence of the labeling of each site in these high perfor-

mance samples and uses this statistical information to guide

the next inner iteration. This method is named Cross Entropy

because the optimization is actually a procedure that mini-

mizes the cross entropy (a.k.a. Kullback-Leibler distance) be-

tween the optimal importance sampling density and the target

density [8]. This algorithm is bound to terminate after a fi-

nite number of iterations because in the end the probability

density vt converges to 0 or 1 according to Proposition 4.2 in

[8].

Function p(·;�v) can be any kind of pdf but the indepen-

dent m-point distribution is usually enough. This means the

probability that the site i is set to label j at iteration t is pro-

portional to vj
t,i (Note that

∑m
j=1 vj

t,i = 1). Besides, three

parameters need to be pre-defined, ρ, N and P . Usually, ρ
is a small value between 1% and 10%. When the number
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of sites, r, is large, we tend to choose larger ρ. Regarding

the sample size N , we set N = cr, where c is a constant

and often between 1 and 10. We usually keep the total num-

ber of outer iterations P less than 10 because the algorithm

generally reaches a quite low energy after a few iterations.

The ICEPS solver is flexible because we can strike a desir-

able balance between effectiveness and efficiency by tuning

these three parameters, ρ, N and P . Usually the larger ρ (less

than 1), N or P is, the lower energy we can achieve and it

takes more time to run ICEPS. From the algorithm above, we

can see that ICEPS only needs to evaluate the energy function

so unlike GC and BP, ICEPS is general and can be applied to

any type of MRF energy function.

There are some explanations on the above ICEPS algo-

rithm. First, the division of the site set is implemented by

partitioning an image into several sub-images. It is preferred

to have some overlapping between a pair of subsets which

are adjacent in the image. We can adjust the size of overlap-

ping according to the size of neighborhood system of MRF

models. The larger the neighborhood system is, the wider the

overlapping region can be. The motivation to use such a par-

tition strategy is to reduce the time complexity of the original

CE algorithm. This strategy is justified by the MRF theory.

The most significant characteristic of Markov random field is

Markovianity, which means the status of one site is only de-

pendent on its neighborhood. This feature allows us to use the

”divide and conquer” strategy to obtain lower computational

complexity. Second, we need to iterate the ICEPS algorithm

in order to allow long-range interaction which may span more

than one subset.The initialization of each iteration should be

based on the previous one. In the previous iteration, we get an

intermediate result on the labeling and we can assign a large

weight to the site according to the intermediate result for the

initialization. For example, if in the previous result site i is

set to label j, in current iteration, the initialization can lean

to that label, e.g. vj
t,i = 1/2 and vi

t,i = 0.5/(m − 1), for

i �= j. Thus, the link between two iterations in succession is

established.

3. EXPERIMENTAL RESULTS

In this section, we apply the three solvers ICEPS, ICM and

GC to two MRF models (Potts model and a boundary model

as the prior MRF energy functions) for brain image segmen-

tation and compare their performance. The three solvers are

all used for the simple Potts model but only ICEPS and ICM

are used for the complex compound model because GC is not

applicable for it. Please refer to [9] for more details about the

boundary model due to limited space. We adopt the simple

but effective Gaussian function as the likelihood MRF func-

tion. Also notice that another popular solver, belief propa-

gation (BP), is not proper for that model, either. The com-

parison of BP with cross entropy as solvers for simple MRF

models can be found in the previous work [7]. In both MRF

models, the parameters for the likelihood energy are speci-

fied manually by selecting region of interest (ROI) and calcu-

lating the means and standard deviations since we know the

ground truth. These parameters are kept the same in the com-

parison. The implementation environment is Microsoft Visual

C++ .NET 2003 on a computer with 2.26GHz CPU and 1 GB

memory.

3.1. Synthetic Images

We obtained a series of BrainWeb T1-weighted MRI data

with different levels of noise from a public simulated brain

database [10]. The image size is 217× 181. It is a multi-class

segmentation problem to divide human brains into different

tissues like white matter (WM), gray matter (GM), cerebrospinal

fluid (CSF), fat, skull, glial matter, connective, etc. In our ex-

periments, we focus on the former three tissues because they

are of major interest, have complicated structures and occupy

around 70% of the whole brain volume. As such, we segment

the data into four classes {WM, GM, CSF, others}. We re-

move all the other irrelevant tissue (e.g. skull, fat, etc) from

the images by setting them the same as background. The re-

sults of minimal energy values and segmentation errors found

by the three solvers using the Potts model as formulation are

shown in Tab. 1. The results of minimal energy values and

segmentation errors found by the two solvers using the second

compound MRFs model as formulation are shown in Tab. 2.

All the parameters and initialization are set to the same for

the comparisons. We repeat the ICEPS algorithm for 5 times

and calculate the means and standard deviations of the energy

values because it is a stochastic solver. We show its mean

performance and standard deviation.

noise level ICM GC ICEPS

minimum error minimum error minimum error

3% 25123 2.38% 24993 2.37% 24938 ± 18 2.32% ± 0.03%

5% 27828 2.96% 27694 2.93% 27605 ± 2 2.91% ± 0.01%

7% 29553 3.27% 29426 3.26% 29145 ± 2 3.01% ± 0.01%

9% 33739 4.30% 33436 4.21% 32753 ± 23 3.43% ± 0.05%

Table 1. Results of the Potts MRF model using three different
solvers for multi-class segmentation on BrainWeb data. The
lowest energy and error rate of each case is highlighted in
bold.

dataset ICM ICEPS

minimum error minimum error

3% 20094 2.37% 15537 ± 3 1.88% ± 0.02%

5% 22749 3.26% 17955 ± 8 2.79% ± 0.05%

7% 24576 3.52% 19160 ± 30 3.43% ± 0.01%

9% 28327 4.85% 25463 ± 69 4.75% ± 0.04%

Table 2. Results of the compound MRF model using two dif-
ferent solvers for multi-class segmentation on BrainWeb data.
The lower energy and error rate of each case is highlighted
in bold.
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3.2. Real Medical Images

The real clinical datasets are obtained from the Internet Brain

Segmentation Repository (IBSR) [11], which provides real

magnetic resonance cerebral image data. The data we use for

experiments are T1-weighted brain scan from a male subject

and each slice is 256×256 large. The segmentation performed

here has three classes {white matter, gray matter, others}. We

again test the Potts MRF model on 4 datasets (slices) and cal-

culate the energy values and segmentation errors obtained by

the three solvers, which are shown in Tab. 3. The minimal

energy reached by the two solvers ICM and ICEPS using the

second compound MRFs model as formulation are shown in

Tab. 4. Again we repeat the ICEPS algorithm for 5 times

and calculate the means and standard deviations considering

its stochastic property.

dataset ICM GC ICEPS

minimum error minimum error minimum error

1 19487 3.03% 19315 3.01% 19283 ± 9 2.91% ± 0.02%

2 25176 3.26% 23719 3.19% 23687 ± 6 3.08% ± 0.01%

3 19938 3.10% 19560 3.06% 19523 ± 6 2.92% ± 0.01%

4 20396 2.49% 20061 2.46% 20020 ± 3 2.29% ± 0.03%

Table 3. Results of the Potts MRF model using three different
solvers for multi-class segmentation on IBSR data. The lowest
energy and error rate of each case is highlighted in bold.

dataset ICM ICEPS

minimum error minimum error

1 17039 3.06% 14511 ± 18 2.85% ± 0.01%

2 21936 3.31% 19206 ± 10 2.92% ± 0.02%

3 17758 3.11% 15264 ± 41 2.74% ± 0.01%

4 18130 2.56% 15580 ± 2 2.22% ± 0.01%

Table 4. Results of the compound MRF model using two dif-
ferent solvers for multi-class segmentation on IBSR data. The
lower energy and error rate of each case is highlighted in
bold.

From the above experimental results we can find both ICM

and ICEPS are general solvers but ICM is inclined to be stuck

in very local minima (fairly high energy). GC improves this

problem a lot by finding more global optimum (fairly low en-

ergy) but it has the limitation of applicability. Not only can

ICEPS find low energy (even lower than GC) but also can

be applied to arbitrary energy functions (e.g. the complicated

boundary model above). The effectiveness of ICEPS is shown

in the quantitative comparison of segmentation error, which

is calculated by dividing the number of misclassified pixels

by the number of total pixels. It can be found that ICEPS is

able to work better both for simple and complex models than

a commonly-used optimization method and a state-of-the-art

one.

The running time of the ICM algorithm is less than ten

seconds. GC takes a little longer than ICM. ICEPS finishes

the job within five minutes. The computation time of SA is

expected to be a few hours. However, since the architecture

of ICEPS algorithm is inherently parallel and its steps are all

simple, it has large potential to speed up by parallel process-

ing or algorithm optimization.

4. CONCLUSION

In this paper, we propose a new solver, namely iterated cross

entropy with partition strategy (ICEPS), for Markov random

field modeling, which is an important tool not only in im-

age segmentation but in medical image analysis as well. The

proposed solver is shown to be general because it is applica-

ble to arbitrary objective functions. Thanks to its stochastic

property, ICEPS is capable of finding lower energy than some

commonly-used or state-of-the-art solvers. The contribution

of ICEPS lies in that it is appropriate for any type of MRF

models especially those complex models that GC and BP can-

not be used. Moreover, it is able to find very low energy and

thus achieve better segmentation results.
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