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Cantonese Tone Recognition Using the Hilbert-Huang Transform 

by Oz LAM Ying Fung 

Department of Computer Science and Engineering 

The Hong Kong University of Science and Technology 

Abstract 

Cantonese is a very popular spoken language/dialect, which is well known for 

its rich set of nine tones and the similarity in tone contours between its tones. 

Automated tone recognition of Cantonese is very challenging. Hilbert-Huang 

Transform (HHT) is an empirical algorithm that works on non-stationary and 

nonlinear signals. In this study, the performance of the HHT algorithm on the 

recognition of Cantonese tones for isolated syllables was examined. 

In the first stage of this study, HHT was used as a frequency detection tool for 

syllables from the CUSYL corpus. The experimental results showed a 25% 

improvement in the accuracy of the fundamental frequency detection  compared with 

peak picking the performance of the Fast Fourier transform. In the second stage of 

this study, the accuracy of the HHT on the CUSYL corpus was improved through 

experimentation with various parameters used by the core component of HHT, i.e. 

the Windowed Average-based Empirical Mode Decomposition (WA-BASED EMD). 

In the final stage of this study, Support Vector Machines (SVM) were used as binary 

classification tools. Pitch track information obtained by HHT together with tone 

information from the CUSYL corpus was used to train a set of 6 SVMs with more 

than 1,500 syllables. The experimental results showed a 79.08% speaker-independent 

tone recognition rate for isolated Cantonese syllables. 
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CHAPTER 1 

INTRODUCTION 

Speech recognition is the process of converting spoken words into patterns so 

that they can be used for further processing by computer. It is used for a variety of 

different tasks, including: controlling fighter aircraft by voice commands; training 

air traffic controllers; automatic translation from spoken inputs; data entry by 

speech; voice searching; and voice controls on mobile devices. Examples of modern 

and publicly accessible usage include the Google Voice Search Service [1] and the 

voice control system, called Siri, on iOS developed by Apple Inc. [2]. Tone 

recognition is part of the speech recognition process. It is required for tonal 

languages, like Chinese. 

Cantonese is the native dialect of Chinese people that hail from the Guandong 

province. It is used by about 60 million people in more than 20 countries, which is 

about 0.9% of the world’s population [3]. It is the 25th most used dialect/language in 

the world and it is also the 3rd most widely used dialect of Chinese, after Mandarin 

and Wu. 

There are already many studies on speech recognition of the Mandarin dialect. 

But speech recognition of different languages/dialects usually requires different 

techniques due to the structural differences of the languages. Languages in different 

language families differ greatly in syllables, tone and word composition. 

For example, when comparing Cantonese words with English words, their 

word composition is totally different. Cantonese, as a dialect of Chinese, is a 

descendant of the Sino-Tibetan language family. Cantonese words are formed using 

single syllables with a specific tone. On the other hand, English is a descendant of 

the Indo-European language family. English words are formed using one or more 

syllables without any tonal element involved. In Cantonese, the same syllable spoken 

with a different tone is usually a different word with a different meaning. While in 

English the tone of a single word does not change the lexical meaning of the word 

itself. 
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Different dialects of a language may also vary a lot in their structure. In 

Chinese, the set of initials, finals and tones of the words in Mandarin compared with 

Cantonese are significantly different. For example, there are four tones in Mandarin 

while there are nine tones in Cantonese. 

A recent study tried to apply Hilbert-Huang Transform (HHT) to the Mandarin 

dialect of Chinese. The study showed that the use of HHT improved the frequency 

detection accuracy and the tone recognition rate of Mandarin syllables [4]. This 

study highlighted the potential applications of HHT and prompted the study behind 

this thesis. The focus of this thesis is the application of HHT for Cantonese tone 

recognition. As explained previously, there are significant differences between 

Cantonese and Mandarin in terms of the syllable and tone structures. That makes the 

reuse of the results of research on speech recognition of Mandarin not directly 

applicable to Cantonese. Furthermore, the HHT algorithm used [4] is empirical. This 

means the parameters and procedural details of the algorithm needs an extensive 

reconsideration when applying it to a different language/dialect. 

In this study, we investigate the performance of the HHT algorithm to 

Cantonese tone recognition. 

Firstly, we carry out an experiment on the different fundamental frequency 

detection and pitch tracking algorithms. Sine, triangle and sawtooth wave signals are 

used to evaluate the performance of four ‘traditional’ algorithms. The four 

algorithms are zero-crossing rate (ZCR), auto-correlation (AUTO-CORR), Fast 

Fourier Transform (FFT) and Cepstral Analysis (CEPS). FFT is found to be the best 

algorithm and is selected as the comparison base. 

Secondly, voice samples from the CUSYL Cantonese spoken word corpus are 

used. The pitch tracks of some of the voice samples are manually measured for 

accurate reference. FFT and HHT are applied to those Cantonese syllables to obtain 

the fundamental frequency data. Experimental results show that the HHT has on 

average a 25% improvement on the mean absolute percentage error for fundamental 

frequency detection, when compared to the best result from the FFT comparison 

algorithm. 
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Thirdly, we examine the various arrangements of the parameters and 

procedural details of the Empirical Mode Decomposition (EMD). EMD is an 

important part of the HHT algorithm. EMD is used to decompose a voice signal into 

smaller components, called Intrinsic Mode Functions (IMFs), for further analysis. Its 

accuracy greatly affects the fundamental frequency detection.  As a result, we carry 

out two experiments which help optimize the parameters needed by the WA-BASED 

EMD (an improved version of EMD) and hence improve its accuracy when applied to 

Cantonese voice samples.  

By the design of the algorithm, WA-BASED EMD requires an initial guess of 

the fundamental frequency of the input signal. The IMFs decomposed by WA-

BASED EMD depend a lot on the initial guess. A good guess usually produces a  set 

of clean IMFs. Several methods for initial guessing of the fundamental frequency are 

compared, and the best among them is chosen as the default choice of the initial 

guessing method of WA-BASED EMD for the next experiment. 

Another important procedural detail is the stoppage criterion of the sifting 

process of EMD. The sifting process is a sub-procedure used for obtaining the IMFs. 

Usually to decompose a signal into IMFs, the number of sifting needed is 10 -100 

times the number of IMFs extracted. Having a suitable stoppage criterion can reduce 

the sifting needed, hence reducing the computational cost. Different stoppage 

criterions are compared. The best is chosen as the default choice of the stoppage 

criterion of the WA-BASED EMD for the next experiment. 

Lastly, we combine the results from the previous experiments and use HHT to 

obtain the pitch tracking of Cantonese voice samples. A set of Support Vector 

Machines (SVMs) is trained with the pitch tracking results as classifiers. The SVMs 

are then used to classify the tone of the voice samples from the CUSYL corpus. The 

results suggest an average of 79.08% correctness for Cantonese tone recognition.  

In this thesis, background information concerning the human voice, the 

Cantonese dialect and speech recognition are covered in Chapter 2. Chapter 3 gives 

an overview of algorithms used in digital signal processing and speech processing. 

The details of how the different algorithms are used for fundamental frequency 

detection and pitch tracking are described in Chapter 4. Related work is reviewed in 
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Chapter 5. Chapter 6 describes the objective, methodology and the related 

experiments and their results. Conclusions and suggestions for future work are given 

in Chapter 7. 
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CHAPTER 2 

BACKGROUND 

2.1 Overview 

In this chapter, we will look at the background information of the  human 

voice and its production, the Cantonese dialect and speech recognition 

2.2 The Human Voice 

In 1970, Gunnar Fant proposed a simplified model for human voice 

production [5]. The model assumes the voice signal is a result of transformation of a 

periodic pulse train produced by air passing through the vocal cords by vocal tract 

resonances. Mathematically, a voice signal 𝑠(𝑡) could be formulated by: 

𝑠(𝑡) = 𝑝(𝑡) ∗ ℎ(𝑡) 

Equation 1 Simplified Model for Human Voice by Fant 

where 𝑝(𝑡) is the periodic pulse train; (𝑡) is the transform response; and where ∗ is 

the convolution operation. 

In this model, the change of pitch is mainly related to the pulse train. Hence 

pitch detection in this model requires finding the fundamental period or fundamental 

frequency of the pulse train 𝑝(𝑡). 

2.3 Cantonese 

There are about 60 million native Cantonese speakers all over the world, 

which accounts for about 0.9% of the world population. Cantonese is the native 

dialect for the majority of people living in Guangdong Province, Hong Kong and 

Macau. Well-known for its richness in tones and comparatively more complicated 

tonal system, automatic speech recognition for Cantonese is far more difficult than 

that for other dialects of Chinese. 
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2.3.1 Syllable Structure 

The structure of a Cantonese syllable is shown in Figure 1. In Cantonese there 

are 19 initials and 53 finals, which are listed in Table 1 and Table 2. Every syllable 

consists of an optional initial and a final, which form the sound of that syllable. A 

final consists of a vowel and an optional terminal. When a syllable is pronounced, a 

particular tone is used. In Cantonese, all 19 initials are consonants. There are about 

620 initial and final combinations and about 1761 syllables in Cantonese [6]. 

Tone 

Initial 

(optional) 

Final 

Vowel 
Terminal 

(optional) 

Figure 1 Cantonese Syllable Structure 
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Initial 

LSHK IPA Example Word 

b /p/ 巴 

p /ph/ 怕 

m /m/ 媽 

f /f/ 花 

d /t/ 打 

t /th/ 他 

n /n/ 那 

l /l/ 啦 

g /k/ 家 

k /kh/ 卡 

ng /ŋ/ 牙 

h /h/ 蝦 

gw /kw/ 瓜 

kw /kwh/ 誇 

w /w/ 蛙 

z /ts/ 渣 

c /tsh/ 叉 

s /s/ 沙 

j /j/ 也 

Table 1 List of Cantonese Initials. LSHK is the Cantonese Romanization Scheme 

proposed by the Linguistic Society of Hong Kong. IPA is the International 

Phonetic Alphabet. 
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Final 

LSHK IPA Example Word 

aa /aː/ 沙 

aai /aːi/ 乖 

aau /aːu/ 貓 

aam /aːm/ 三 

aan /aːn/ 單 

aang /aːŋ/ 丁 

aap /aːp/ 甲 

aat /aːt/ 八 

aak /aːk/ 白 

ai /ɐi/ 西 

au /ɐu/ 收 

am /ɐm/ 心 

an /ɐn/ 新 

ang /ɐŋ/ 等 

ap /ɐp/ 入 

at /ɐt/ 七 

ak /ɐk/ 得 

e /ɛː/ 卸 

ei /ei/ 非 

eu /ɛːu/ 掉 

em /ɛːm/ 舐 

eng /ɛːŋ/ 鄭 

ep /ɛːp/ 夾 

ek /ɛːk/ 石 

i /iː/ 詩 

iu /iːu/ 消 

im /iːm/ 閃 

in /iːn/ 先 
 

Final 

LSHK IPA Example Word 

ing /ɪŋ/ 永 

ip /iːp/ 蝶 

it /iːt/ 鐵 

ik /iːk/ 的 

o /ɔː/ 拖 

oi /ɔːi/ 才 

ou /ɔːu/ 肚 

on /ɔːn/ 漢 

ong /ɔːŋ/ 康 

t /ɔːt/ 割 

ok /ɔːk/ 學 

u /uː/ 虎 

ui /uːi/ 胚 

un /uːn/ 寬 

ung /ʊŋ/ 宋 

ut /uːt/ 闊 

uk /ʊk/ 叔 

oe /œː/ 靴 

oeng /œːŋ/ 娘 

oek /œːk/ 卻 

eoi /ɵy/ 佢 

eon /ɵn/ 潤 

eot /ɵt/ 出 

yu /yː/ 鼠 

yun /yːn/ 短 

yut /yːt/ 雪 

m /m̩/ 唔 

ng /ŋ̩/ 五 
 

Table 2 List of Cantonese Finals 
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2.3.2 Tones 

In Cantonese, there are 9 tones in 6 contrastive contours. 3 of them are 

entering tones which only appear in syllables with the terminal /p/, /t/, /k/. Table 3 is 

a summary of the 9 Cantonese tones. Distinguishing the entering tones from the non-

entering tones is relatively easy since they have specific terminals. Also syllables 

with entering tone are significantly shorter in term of duration when compared to 

syllables with non-entering tones. In this study, we focus on distinguishing between 

tones 1 to 6. 

Tone 

Number 
1 2 3 4 5 6 7 8 9 

Tone 

Name 

High 

level 

Mid 

rising 

Mid 

level 

Low 

falling 

Low 

rising 

Low 

level 

Entering 

high 

level 

Entering 

mid level 

Entering 

low level 

Example 

Word 
分 粉 訓 焚 奮 份 忽 發 彿 

LSHK fan1 fan2 fan3 fan4 fan5 fan6 fat1 faat3 fat6 

IPA /fɐn1/ /fɐn2/ /fɐn3/ /fɐn4/ /fɐn5/ /fɐn6/ /fɐt1/ /faːt3/ /fɐt6/ 

Table 3 Summary of Cantonese Tones. 

2.4 Fundamental Period and Fundamental Frequency 

For a periodic signal, the smallest unit we needed to completely describe it is 

a complete period of the signal. For a periodic signal 𝑥(𝑡), the value of it is the same 

after a shift in unit time 𝑇, that is: 
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𝒙(𝒕) =  𝒙(𝒕 + 𝒏𝑻) ∀𝒏 ∈ ℤ 

Equation 2 Definition of Periodic Signal 

𝑇  is called the period of 𝑥(𝑡) . Obviously multiples of 𝑇  must also be the 

period of 𝑥(𝑡). Most of the time we are interested in finding the smallest value of 𝑇, 

which we call 𝑇0 . This is called the fundamental period of a signal. From the 

definition, the frequency of a signal is the reciprocal of its fundamental period. 

Hence the fundamental frequency, 𝐹0 , is the reciprocal of the fundamental period. 

For a signal that is composed by multiple periodic signals with different frequencies, 

the fundamental frequency is the frequency of the component with the lowest 

frequency. 

2.4.1 Missing Fundamental 

The ‘missing fundamental’ is the phenomenon where a signal has the 

overtones (higher harmonics) but lacks the fundamental frequency (first harmonic) 

[7]. Pitch detection performed by the human brain is achieved not only by tracing the 

fundamental frequency but also the ratio of the higher harmonics. For example, the 

pitch perceived by the human brain of a periodic signal with peaks at 440Hz, 660Hz, 

880Hz, 1100Hz is 220Hz even though there is no peak at 220Hz. 

2.4.2 Voiced and Unvoiced Sound 

A sound is classified as voiced if the vocal cords vibrate when the air pass 

through. Otherwise the sound is classified as unvoiced. In Cantonese, all the nasal 

initials (/m/, /n/, /ng/) and all the finals are voiced and all the non -nasal initials are 

unvoiced. As mentioned in section 2.1, the pitch of a sound is mainly related to the 

pulse train, therefore only the voiced part of a syllable contains useful pitch 

information. 
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2.5 Closing Comments 

In this chapter, we have looked at the background information of human voice 

production of the Cantonese dialect. We have also discussed the definition of 

fundamental frequency and how it is related to tone in tonal languages. In the next 

chapter, we will have a look at the traditional algorithms that are used for speech 

processing. Also, the details of the Hilbert-Huang transform will be discussed. 

  



 

 12 

CHAPTER 3 

ALGORITHMIC TECHNIQUES FOR SPEECH PROCESSING 

3.1 Overview 

In this chapter, we review different algorithms that have been used in speech 

processing. The algorithmic techniques we consider are: 

1. Zero-crossing rate 

2. Auto-correlation 

3. Fourier transform 

4. Cepstrum 

5. Wavelet transform 

6. Hilbert-Huang transform 

The first two and the last one, i.e. zero-crossing rate, auto-correlation and 

Hilbert-Huang transform, work in the time domain. The other three, i.e. Fourier 

transform, Cepstrum and Wavelet transform, work in the frequency domain. 

In the list above, instead of grouping the algorithms by the domain (time 

domain/ frequency domain) they work in, the order of the technique is based on the 

year they are first proposed and used in signal processing, which is also the order of 

complexity of the algorithm. 

We will consider the basic concept of each algorithm and their application to 

speech processing, fundamental frequency detection and pitch tracking. Accuracy, 

processing speed and complexity of implementation are the major consideration.  
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3.2 Zero-crossing Rate 

Zero-crossing is a point where the sign of the amplitude of a signal changes 

e.g. from positive to negative. By the definition of fundamental frequency in section 

2.4, counting the number of zero-crossings could be used as a method for estimating 

the fundamental frequency of a signal. In simple zero-mean periodic signal, the time 

interval between three adjacent zero-crossing points is equal to the period length of 

the signal in the ideal case. For example, Figure 2 shows a complete period of a sine 

function and its zero-crossing points. 

 

Figure 2 Zero-crossing Points of a Signal 

This algorithm is simple, fast and easy to implement, but has a very high error 

rate when working with signal with noise present. 

3.3 Auto-correlation 

Auto-correlation (ACF) is a mathematical tool works by finding the similarity 

of a signal with itself. For a signal 𝑥(𝑡), the auto-correlation function 𝐴𝐶𝐹𝑥(𝑡)(𝜏) is 

defined as: 
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𝐴𝐶𝐹𝑥(𝑡)(𝜏) ≝ ∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏)𝑑𝑡
∞

−∞

 

Equation 3 Definition of Auto-correlation Function 

where 𝜏 is the lag between the two copies of 𝑥(𝑡). 

By definition, Equation 3 is the convolution of 𝑥(𝑡)  and 𝑥(−𝑡)  where 

convolution of two functions 𝑓(𝑡) and 𝑔(𝑡) is defined as: 

(𝑓 ∗ 𝑔)(𝜏) ≝ ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 

Equation 4 Definition of Convolution 

The convolution of discrete functions 𝑥[𝑛] and 𝑦[𝑛] is defined as: 

(𝑥 ∗ 𝑦)[𝑛] ≝ ∑𝑥[𝑚]𝑦[𝑛 − 𝑚]

𝑚

 

Equation 5 Definition of Discrete Convolution 

For example, x[n] is the pulse train and y[n] is vocal tract response in human 

voice production. 

Hence the ACF on a discrete signal 𝑥[𝑛] is defined as: 

𝐴𝐶𝐹𝑥[𝑛](𝜏) ≝ ∑𝑥[𝜏]𝑥[𝑛 − 𝜏]

𝜏

 

Equation 6 Definition of ACF for Discrete Signal 

 

Figure 3 shows a signal with 100 samples and its ACF. The signal is a sine 

function with random white noise added. In this example, the peaks are found at the 

lag 𝜏 = 0 and approximately at the lag 𝜏 = 10, 20, 30, 𝑒𝑡𝑐.. That means the signal has 

high similarity with itself at those lag values. Under the assumption that the input 
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signal is a periodic signal, we can conclude that the period length of the input signal 

is 10 samples. 

 

Figure 3 Plot of a Signal (top) and its ACF (bottom) 

Calculating the ACF of a 𝑁  points signal 𝑥(𝑡)  can be done in 𝑂(𝑁2) 

arithmetical operations. It can be simply implemented by using two loops. Advanced 

programming languages, such as MATLAB, provide a convolution function as a 

basic component. 

Auto-correlation can be used to reveal the information about repeating events 

in a signal. For example, it can be used to determine the pitch of a musical tone. 

Similarly, it can be used to estimate the frequency of the periodic pulse train in a 

speech signal. 
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One advantage of ACF is that it is more resistant to noise compared to the 

zero-crossing method. 

3.4 Fourier Transform 

A periodic function could be expressed as the sum of a series of sine and 

cosine functions. These sine and cosine functions are the frequency composition of 

the signal. Fourier transform (FT) is one of the mathematical tools that decomposes a 

signal into its frequency components. 

A frequency spectrum represents a time domain signal in the frequency 

domain. The result of an FFT is a frequency spectrum. A frequency spectrum can 

clearly show the composition of a signal in terms of the contribution of different 

frequency components. 

3.4.1 Fourier Series 

A periodic signal function 𝑥(𝑡) with period 2𝜋, i.e. 𝑥(𝑡 + 2𝜋𝑛) =  𝑥(𝑡) ∀𝑛, 

when expressed as the sum of a set of simple harmonic oscillating function (sines 

and cosines) in the form of:  

𝑥(𝑡) =
1

2
𝑎0 + ∑(𝑎𝑛 cos(𝑛𝑡) + 𝑏𝑛 sin(𝑛𝑡))

∞

𝑛=1

, 

𝑤ℎ𝑒𝑟𝑒, 𝑎0 =
1

𝜋
∫ 𝑥(𝑡) 𝑑𝑡

𝜋

−𝜋

 

𝑎𝑛 =
1

𝜋
∫ 𝑥(𝑡) cos(𝑛𝑡) 𝑑𝑡

𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ 𝑥(𝑡) sin(𝑛𝑡) 𝑑𝑡

𝜋

−𝜋

 

𝑛 = 1, 2, 3, … 

Equation 7 Definition of Fourier Series of a Periodic Signal 𝒙(𝒕) 

is called the Fourier series of 𝑥(𝑡) . The coefficients 𝑎𝑛  and 𝑏𝑛  measure the 

contribution from each harmonic. 



 

 17 

3.4.2 Fourier Transform 

Fourier transform is the generalization of the process of finding the Fourier 

series of a periodic signal with period 2𝜋 to any arbitrary periodic signal with period 

2𝐿  and any arbitrary aperiodic signal. The Fourier transformed signal in the 

frequency domain, 𝑋(𝜔), of a time domain signal 𝑥(𝑡), is defined as: 

𝑋(𝜔) = ∫ 𝑥(𝑡)ℯ−2𝜋𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

Equation 8 Definition of Fourier Transform of a Signal 𝒙(𝒕) 

When the independent variable 𝑡  represents time, the dependent variable 𝜔 

represents frequency.  

In the rest of this thesis, ℱ{𝑥} will be used to denote the Fourier transform of a 

signal 𝑥(𝑡). 

3.4.3 Discrete Fourier Transform 

The discrete Fourier transform (DFT) is the Fourier t ransform applied to a 

finite discrete signal. It gives a result which is discrete in the frequency domain. For 

a discrete signal 𝑥[𝑛] with sampling rate 𝑓𝑠, its DFT is defined as: 

𝑋𝑘 = ∑ 𝑥[𝑛]𝑒
−2𝜋𝑖

𝑁
𝑘𝑛

𝑁−1

𝑛=0

, 𝑘 = 0, 1, … ,𝑁 − 1 

Equation 9 Definition of Discrete Fourier Transform of a Discrete Signal 𝒙[𝒏] 

where 𝑁 is the number of samples of the signal 𝑥[𝑛]. The frequency spectrum also 

has 𝑁  points. 𝑋0  and 𝑋𝑁−1  represent the contribution of 0Hz and 𝑓𝑠 Hz component 

respectively. Each point is separated by 𝑓𝑠 𝑁⁄  Hz. 

𝑋𝑘 is even symmetrical around the central point 𝑘 = 𝑁 2⁄ . So the useful region 

of 𝑋𝑘  is only from 𝑘 = 0  to 𝑘 = 𝑁 2⁄ . Hence the DFT can only capture frequency 

components up to 𝑓𝑠 2⁄  Hz. 
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For example, let us consider a 4,000 sample length signal with sampling rate 

16,000Hz. Its DFT has 4,000 points, where 𝑋1999 represents the contribution of the 

8,000Hz component. Only the first 2,000 points of the DFT is useful due to the 

symmetric property. This means that the DFT can only capture frequency 

components up to 8,000Hz. 

Instead of FT, DFT is needed in signal processing in the processing of digital 

signals since the signals are always discrete. 

3.4.4 Fast Fourier Transform 

Fast Fourier transform (FFT) is the classification of the most efficient 

algorithm to compute the DFT of a discrete signal.  

Computing a DFT of a 𝑁 points signal by Equation 9 takes Ο(𝑁2) arithmetical 

operations while FFT can compute the same result  efficiently in O(𝑁𝑙𝑜𝑔𝑁) 

operations. 

There are many different algorithms of FFT. One of the most common FFT 

algorithms is the Cooley-Tukey algorithm [9]. It is a divide and conquer algorithm 

which takes a 𝑁 points input where 𝑁 is a power of 2. It first divides the input into 

two halves and applies FFT to each half separately and recursively. After that it 

combines the results from the two halves to produce the final result. A more detailed 

explanation of the Cooley-Tukey algorithm can be found in [9]. 

3.4.5 Short-time Fourier Transform 

The Short-time Fourier Transform (STFT) can show the trend of the changes 

of the fundamental frequency and other higher harmonics. It can be used as a pitch -

tracking tool. To increase the accuracy and the resolution of the frequency 

decomposition, a signal is usually divided into many short segments . FT is applied to 

each of them instead of applying FT to the entire signal. Every segment reveals local 

frequency information of the signal across its original time domain span. The result 
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is an energy-time-frequency spectrum. The segments may or may not be overlapped. 

The plot of the amplitude of the result of STFT is a spectrogram. 

Figure 4 shows a human voice signal and its spectrogram calculated by STFT. 

The x axis in the plot in figure 4(b) is the n th segment, the y axis is the frequency in 

log scale of the FT of each segment. The grey-scale displays the amplitude of the 

contribution of each frequency component. Dark grey represent a higher value while 

light grey represent a lower value. 

There are many FFT implementations freely available for different platforms 

and programming languages [10][11][12]. There is also hardware developed for 

performing FFT [13]. STFT is just a simple loop which can be implemented within 

20 lines of code if FFT is already available as a function. 

 

Figure 4 Plot of (a) a Human Voice Signal and (b) its spectrogram by Short-time 

Fourier Transform 
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3.4.6 Spectral Leakage 

In the ideal case, the number of periods of a signal should be an integer . When 

the number of periods of the signal is not an integer, the spectrum obtained will show 

energy leakage around the peaks. Those unwanted components are called side lobes. 

Figure 5 shows the spectrums with and without leakage of a function of 𝜔0 Hz. 

 

Figure 5 Spectrum of a 200Hz Sine Wave with Integer Number of Periods (left) 

and spectrum of a 200Hz Sine Wave with Non-integer Number of Periods (right) 

For example, the spectrum of a 200Hz sine wave with an integer number of  

complete periods e.g. 7 shows a single stem at 200Hz and energy contributed by 

other frequencies are zero. In contrast, the spectrum of a 200Hz sine wave with a 

non-integer number of complete periods e.g. 7.3 periods has its peak at 200Hz, with 

energy leaked to the side lobes. This is illustrated in Figure 5(a) and 5(b) 

respectively. 

3.4.7 Hamming Window 

The Hamming window was proposed by mathematician Richard W. Hamming 

[14]. It is one period of a raised cosine function. The formula of the Hamming 

window is: 
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𝑤(𝑛) = 0.54 − 0.46 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 − 1
) 

Equation 10 Definition of the Hamming Window 

where 𝑁 is the width (in number of samples) of the Hamming window and 0 ≤ 𝑛 ≤

𝑁 − 1. 

The Hamming window can help reducing the spectral leakage problem by 

minimizing the side lobes in the spectrum. By applying the hamming window before 

performing the FFT on the signal segment, the leakage could be reduced. Figure 6 

shows the plots of a Hamming window of 64 samples width in the time and the 

frequency domain on the left and right respectively. 

 

Figure 6 Plot of a 64 samples Hamming Window in Time Domain (left) and the 

corresponding Frequency Domain (right) [15] 

3.5 Cepstrum 

Cepstrum was first introduced by Bogert et al. in 1963 [16][17]. The basic 

idea of Cepstrum is to take a spectrum as input and apply FFT to obtain a spectrum 

of spectrum. By doing so, we can examine the properties that may be hidden in the 
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spectrum. For example, in the cepstrum, we could reveal the fundamental of a  

spectrum that has missing fundamental occurred. 

By taking the Fourier transform of a spectrum in log scale as if it is a time 

domain signal, a cepstrum is obtained. Formally, the cepstrum 𝐶(𝑞) of a signal 𝑥(𝑡) 

is defined as: 

𝐶(𝑞) =  ℱ{𝑙𝑜𝑔|ℱ{𝑥(𝑡)}|} 

Equation 11 Definition of Cepstrum of a Signal 𝒙(𝒕) 

As mentioned in section 3.4.2, ℱ{𝑥} is the Fourier transform of the signal 𝑥(𝑡). 

The dependent variable 𝑞  in the equation represents quefrency. Quefrency is a 

measurement of time in milliseconds (ms). 

Let consider a specific example. For a simple periodic signal 𝑥(𝑡)  with 

frequency 𝑓0 = 200 Hz, 𝑁 = 8,192 samples length and sampling rate 𝑓𝑠 = 16,000 Hz, 

we can obtain a frequency spectrum 𝑋(𝜔) of 𝑀 = 𝑁 2⁄ = 4096 coefficients ranging 

from 0 to 𝑓𝑠 2⁄ = 8,000Hz. Each pair of the adjacent coefficients is separated by 

𝑓𝑠 𝑁⁄ ≈ 1.95Hz. Considering the frequency spectrum in log scale, 𝑙𝑜𝑔|𝑋(𝜔)| , as a 

periodic signal with period 𝐹0 = 100  samples (which is ≈ 200  Hz), and applying 

Fourier transform on it gives the cepstrum 𝐶(𝑞) of 𝑥(𝑡). The sampling rate of this 

frequency spectrum is 2𝑀/𝑓𝑠 samples/Hz (≈ 0.512 samples/Hz). 

Same as spectrum discussed in section 3.4.3, only half of the coefficients in 

𝐶(𝑞) are useful due to the even symmetric property of the cepstrum. Hence we have a 

cepstrum of 𝑀 2⁄ = 2,048 coefficients ranging from 0 to 4,000 samples. When the 

quefrency is converted back to frequency, the frequency distribution is in a non-

linear scale since 1 𝑓⁄ = 𝑞 ∗ 𝑓𝑠, hence 𝑓 = 𝑓𝑠 (𝑞 ∗ 𝑁)⁄ . For our example, 𝐶(𝑞) shows a 

large peak at 𝑞0 = 80 samples, which indicates that the spectrum has a period every 

80 samples. The fundamental frequency is 𝑓0 = 𝑓𝑠/𝑞0 , which for our example is 

200Hz. 

Figure 7 shows another example. The figure shows a 240Hz sawtooth wave 

signal, its frequency spectrum, its frequency spectrum in log scale and its cepstrum.  
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Figure 7 Plot of (a) a 240 Hz Sawtooth Wave, (b) its Frequency Spectrum,  

(c) its Frequency Spectrum in 𝒍𝒐𝒈 Scale and (d) its Cepstrum 

A cepstrum can be used to estimate the fundamental frequency for  a signal 

which is missing its fundamental frequency component in the spectrum. Moreover, as 

described in section 2.1, a voice signal could be modeled as  

𝑥(𝑡) = ℎ(𝑡) ∗ 𝑝(𝑡) 

where 𝑝(𝑡) is the quasi-periodic signal of the pulse train. After Fourier Transform, 

the voice signal model becomes 
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ℱ{𝑥} = ℱ{ℎ} ∙ ℱ{𝑝} 

After applying log function to the magnitude and then the second Fourier 

Transform, the cepstrum model of the voice signal becomes  

𝑪{𝒙} = 𝓕{𝒍𝒐𝒈|𝓕{𝒉}|} + 𝓕{𝒍𝒐𝒈|𝓕{𝒑}|} = 𝑪{𝒉} +  𝑪{𝒑} 

Equation 12 Cepstrum of the Human Voice Model by Fant 

which is a superposition of the cepstrum of the impulse response and pulse train. 

Since the impulse response ℎ(𝑡) is relatively fast changing, the corresponding 

cepstrum component is expected to be located in the lower quefrency range of the 

cepstrum. In contrast, the pulse train 𝑝(𝑡)  is relatively slow changing. The 

corresponding cepstrum component of the pulse train is expected to be located in 

higher quefrency range of the cepstrum. This  property allows us to separate the pulse 

train from the impulse response. 

Although the cepstrum method can separate the pulse train from the impulse 

response and also find the fundamental frequency of signal which has missing 

fundamental, its resolution is greatly limited by the resolution reduction in the two 

successive Fourier transform. 

In the rest of this thesis, 𝐶{𝑥} will be used to denote the cepstrum of the time 

domain signal 𝑥(𝑡). 

3.6 Wavelet Transform 

Wavelet was first developed in 1910 by Alfed Haar as a mathematical tool  

[18]. 

3.6.1 Overview 

The concept of wavelet transform (WT) was proposed by Jean Morlet in 1981. 

Wavelet transform is the process of producing wavelets from data. Wavelets are 

mathematical functions representing different frequency components of data. They 
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are each studied with a resolution matching their scale. Wavelet transform has the 

advantage in analyzing physical situations where the signal contains discontinuities 

and sharp spikes. 

Comparing to STFT that uses fixed width windows, a wavelet transform scales 

according to the frequency of the current signal segment. The windows used in a 

wavelet transform scale with the frequency thus give a non-linear time domain 

resolution while the accuracy on the frequency domain improves. Figure 8 shows the 

difference of the division of the time and frequency domain of Fourier transform and 

wavelet transform. Every resolution cell in STFT is equally weighted in both time 

and frequency domain while those in wavelet transform varies. In wavelet transform, 

the area (number of samples) of each cell is the same while the height (span of 

frequency band) and width (span of time) of each cell is changing. The shorter the 

cell in the time domain, the lower the resolution in the frequency (scale-value) axis. 

 

Figure 8 Resolution Cell of (a) Input Signal (b) Fourier Transform (c) Short-

time Fourier Transform and (d) Wavelet Transform [19] 

For example, in figure 8 (d), let us assume each cell has 32 samples and the 

scale-value is from 0 to 𝑓𝑠. The top row (i.e. the high scale-value) has 8 cells and 

hence 8 results in the time domain, where each cell has 32 divisions on the frequency 

resolution ranging from 𝑓𝑠 2⁄  to 𝑓𝑠Hz. Each division spans 𝑓𝑠 64⁄  Hz. On the other 



 

 26 

hand, the bottom row (i.e. the low scale-value) has 1 cell only and hence 1 result in 

the time domain. However, it has relatively many more divisions in the frequency 

axis. Specifically, there are 32 divisions on the frequency axis ranging from 0 to 

𝑓𝑠 8⁄ Hz. Each division spans 𝑓𝑠 256⁄ Hz. 

3.6.2 Wavelet Transform in Signal Processing 

Wavelet transform is an improved version of Fourier transform. Fourier 

transform and frequency spectrum are very useful tools for signal anal ysis in the 

frequency domain, but they fail to handle non-stationary signals accurately. In 

contrast, a wavelet transform can decompose a non-stationary signal into elementary 

components at different positions with different scales. 

Although it is useful in breaking down the signal into different compositions, 

the energy-time-frequency information is not always better than that of STFT in the 

accuracy of pitch detection, especially in speech analysis. The Wavelet transform of 

a speech signal only has good frequency resolution in the lower scale range. The 

time domain resolution is even worse than the STFT. Due to the fact that the range of 

the fundamental frequency of human voice is mainly located in the lower scale range, 

in this study we do not use wavelet transform since tone recognition needs a pitch 

track with reasonable time domain resolution.  

When compared to FT, there is less available implemented code freely 

available. There is no hardware developed for performing WT at the time of writing. 

3.7 Hilbert-Huang Transform 

While many tools assume the signal is linear and stationary, Hilbert -Huang 

Transform (HHT) [20] does not. It provides a method for analyzing non-stationary 

and nonlinear data. It was first proposed in 1996.  
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3.7.1 Overview 

Similar to spectrum and cepstrum methods which decompose a signal into 

sinusoids, the first step of HHT is to decompose the signal into finite and often small  

quantities of sinusoid-like components called Intrinsic Mode Functions (IMF) using 

the Empirical Mode Decomposition (EMD) before further analysis. 

Figure 9 shows a signal with one set of possible IMF results produced by 

EMD. 

 

 

Figure 9 A Signal and One Set of Possible IMF Results Produced by EMD 

3.7.2 Intrinsic Mode Functions 

An IMF is defined as a function that satisfies the following two requirements:  

1. The number of extrema and the number of zero-crossing points must 
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either be equal or at most differ by one 

2. At any point, the mean value of the envelope defined by the 

local maxima and the envelope defined by the local minima is zero. 

By the two requirements, an IMF can be considered as a generalized simple 

harmonic function, which allows variable amplitude and frequency along the time 

axis. 

3.7.3 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) decomposes a signal into a finite 

number of IMFs. The process that extracts an IMF is called sifting. EMD consists of 

a series of sifting processes. The ith sifting process produces two resulting 

components: the desired IMF, 𝐼𝑀𝐹𝑖, and a residual, 𝑟𝑖(𝑡), where 𝑥𝑖(𝑡) = 𝐼𝑀𝐹𝑖 + 𝑟𝑖(𝑡), 

𝑥1(𝑡) = 𝑥(𝑡)  and 𝑥𝑖+1(𝑡) = 𝑟𝑖(𝑡)∀𝑖 > 1 . The sifting process continues until the last 

residual, 𝑟𝑛(𝑡), becomes monotonic or with at most one extrema. Finally we get 𝑛 

IMFs. The input signal can be expressed in this form:  

 𝒙(𝒕) =  ∑𝑰𝑴𝑭𝒊

𝒏

𝒊=𝟏

+ 𝒓𝒏(𝒕) 

Equation 13 Definition of Empirical Mode Decomposition 

The IMFs represent different oscillation mode. 𝐼𝑀𝐹1  is the component with the shortest 

period/the highest frequency. 𝐼𝑀𝐹𝑛  is the component with the longest period/the lowest 

frequency. 

Compared to spectrum and cepstrum methods, HHT is more an empirical 

method rather than a theoretical tool. This is because the ‘best’ parameter 

configuration for controlling the sifting process could only be obtained through trial 

and error. This implies that the performance of the EMD process varies from spoken 

language to spoken language. 
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3.7.4 Sifting Process 

As mentioned before, the procedure of extracting an IMF from an input signal 

is called sifting. A sifting process usually consists of several sifting rounds. Figure 

10 shows a general idea of the envelopes and the local mean of a signal in a sifting 

round. With regards to the issue of convergence of the sifting process, this is an open 

question. 

 

Figure 10 An Illustration of a Signal, its Upper Envelope, Lower Envelope and 

Local Mean [21] 
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Listing 1 The Detailed Steps of Sifting Round 𝒋 

1. Find all the local extrema of the input signal 𝑟𝑖,𝑗(𝑡) 

2. Connect all the local maxima by a cubic spline line as the upper envelope, 𝑒𝑚𝑎𝑥 

3. Connect all the local minima by a cubic spline to produce the lower envelope, 𝑒𝑚𝑖𝑛 

4. Find the local mean (the mean of the upper and lower envelope) of the signal 

𝑚𝑖,𝑗(𝑡) =
𝑒𝑚𝑎𝑥+𝑒𝑚𝑖𝑛

2
 

5. Obtain the residual 𝑟𝑖,𝑗+1(𝑡) = 𝑟𝑖,𝑗(𝑡) − 𝑚𝑖,𝑗(𝑡) 

If the residual in round 𝑗 , 𝑟𝑖,𝑗+1(𝑡) , meets one of the stopping criterion 

described in section 3.7.4.1 then it is an IMF and the sifting process finishes.  In this 

situation, we have 𝐼𝑀𝐹𝑖 = 𝑟𝑖,𝑗+1(𝑡) and 𝑟𝑖(𝑡) = 𝑟𝑖,0(𝑡) − 𝑟𝑖,𝑗+1(𝑡). 

Otherwise, the sifting process continues to the next sifting round, round 𝑗 + 1, 

with 𝑟𝑖,𝑗+1(𝑡). 

3.7.4.1 Stopping Criteria of the Sifting Process 

The stopping criterion is one of the most important parts of EMD. It controls 

how many rounds are needed in one single sifting process. It also greatly affects the 

accuracy and quantities of IMFs in the final results since every IMF depends upon 

the residual produced by the previous sifting.  

Listing 2 shows some of the possible stopping criteria that are used in 

traditional EMD sifting processes. 
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Listing 2 Some Possible Stoppage Criteria 

1. The first criterion is proposed by Norden E. Huang [20], the original author of HHT. 

The sifting process finishes when the sum of difference, 𝑆𝐷𝑖,𝑗, is smaller than a pre-

set threshold 𝛼. 

The definition of 𝑆𝐷𝑖,𝑗 for the sifting round 𝑗 when sifting 𝐼𝑀𝐹𝑖 is:  

 𝑆𝐷𝑖,𝑗 =
∑ |𝑟𝑖,𝑗(𝑡) − 𝑟𝑖,𝑗+1(𝑡)|

2
𝑡

∑ |𝑟𝑖,𝑗(𝑡)|
2

𝑡

 

Equation 14 Definition of Sum of Difference for  

the Sifting Round 𝒋 when Sifting 𝑰𝑴𝑭𝒊 

2. Another stoppage criterion from the same author is to count the number of 

consecutive sifting rounds that have (i) residuals with equal numbers of zero-crossing 

points and extrema or (ii) residuals with zero-crossing points and extrema at most 

differs by one.  

The sifting process finishes when there are more than 𝑆 consecutive sifting rounds 

that fulfilled the condition. 𝑆 is decided empirically. 

3. A fixed number of sifting rounds could also be used 

3.7.5 Hilbert Spectral Analysis 

Hilbert Spectral Analysis (HSA) is a method for examining the instantaneous 

frequency of an IMF. 

By applying Hilbert transform to all the IMFs obtained, we can find the 

instantaneous frequencies. The input signal 𝑥(𝑡) can be expressed as: 

  



 

 32 

𝑥(𝑡) = 𝑅𝑒𝑎𝑙 ∑𝑎𝑗(𝑡)𝑒
𝑖 ∫𝜔(𝑡)𝑑𝑡

𝑛

𝑗=1

 

Equation 15 Definition of the Hilbert Spectrum Representation of a Signal 

𝒙(𝒕) 

where 𝑎𝑗(𝑡)𝑒
𝑖 ∫𝜔(𝑡)𝑑𝑡 is the analytic representation of each IMF and 𝑅𝑒𝑎𝑙 is a function 

that obtains the real part of a complex number.  This produces the Hilbert spectrum 

representation of the original signal, which is an energy-time-frequency distribution 

representation. Figure 11 shows an example of applying EMD and Hilbert transform 

to an input signal 𝑥(𝑡) = 𝑠𝑖𝑛(2𝜋(35 + 60𝑡)) + 𝑠𝑖𝑛(2𝜋(15 + 20𝑡)). 

 

Figure 11 Plot of the Hilbert Spectrum of the Signal 𝒙(𝒕) = 𝒔𝒊𝒏(𝟐𝝅(𝟑𝟓 + 𝟔𝟎𝒕)) +

𝒔𝒊𝒏(𝟐𝝅(𝟏𝟓 + 𝟐𝟎𝒕)) [4] 



 

 33 

3.7.6 Mode Mixing Problem and Ensemble Empirical Mode Decomposition 

Ensemble Empirical Mode Decomposition (EEMD) is proposed to solve the 

mode mixing problem which is defined in [22] as: 

“Mode mixing” is defined as any IMF consisting of oscillations of 

dramatically disparate scales, often caused by intermittency of the driving 

mechanisms. When mode mixing occurs, an IMF can cease to have physical 

meaning by itself, suggesting falsely that there may be di erent physical 

processes represented in a mode. 

EEMD is an improved version of EMD. EEMD adds white noise to the input 

signal before performing EMD. The error introduced by the artificial white noise on 

the IMFs is cancelled out by taking average on a sufficient number (usually >100) of 

EMD with different white noise added to the input signal.  

Although EEMD can greatly reduce the mode mixing problem in EMD, the 

computational cost of EEMD is very high when compared to FFT and original EMD. 

This is because EEMD requires hundreds of EMDs to be performed during the 

EEMD process, which is not practical for a real-time system. 

There is a free MATLAB implementation of EMD/EEMD and instantaneous 

frequency calculation for HHT available at  [23]. At the time of writing there is no 

hardware for performing HHT available.  

3.7.7 Windowed Average Based Empirical Mode Decomposition 

In [4], a better local mean estimation method for EMD is proposed. The EMD 

using the new method is named Window Average Based Empirical Mode  

Decomposition (WA-BASED EMD). The author tried to reduce the side effect of 

noise when estimating the local mean, hence eliminating the mode mixing problem 

found in the original EMD method. This new decomposition method also reduces the 

computational time. In WA-BASED EMD, the first sifting process sifts out the most 

noise-like part of the signal as the first IMF in WA-BASED EMD. Since most of the 
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noise is removed, the subsequent siftings only need to perform simpler interpolation  

when constructing envelopes. The WA-BASED EMD hence reduces the 

computational time because interpolation is very time consuming. The disadvantage 

is that one needs to specify the target frequencies as a parameter, which decreases 

the automaticity that the original proposed EMD method has. In this thesis, we use 

HHT with WA-BASED EMD. 

3.8 Comparison of Fourier Transform, Wavelet Transform and Hilbert-Huang Transform 

In this section, we will compare the three transforms we introduced in 

previous sections. The basic concepts of these three transforms are similar: breaking 

down the signal into something simpler and easier for analysis. Zero-crossing and 

ACF are thus excluded from the comparison since their methodology is very 

different. 

Fourier transform uses sine and cosine of different frequencies as its basic 

components for decomposition while wavelet transform uses wavelets as its basic 

components and Hilbert-Huang transform uses IMFs. While sine/cosine and wavelets 

are pre-defined, IMFs are constructed on-the-fly. We say the basis of FT and WT are 

a priori while that for HHT is adaptive. 

The frequency spectrum of FT and WT are obtained by convolution 

(multiplication) of the basic units (sines, cosines, wavelets) with the input signal. 

While FT applies the convolution to the entire signal, WT applies convolution to 

different subdivisions of the signal. On the other hand, HHT uses differentiation 

(subtraction) continuously to obtain the IMFs. Frequencies obtained by FT and WT 

suffer from the uncertainty principle while HHT can obtain instantaneous frequency 

which does not suffer the same problem. 

A frequency spectrum generated by FT produces a 2-dimensional energy 

versus frequency distribution. A spectrum generated by WT and HHT produces a 3-

dimensional energy distribution on the time-frequency plane. STFT can be used to 

obtain a similar 3-dimensional energy distribution. 
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FT cannot handle non-linear and non-stationary signals. WT is relatively 

better in the way that it can handle non-stationary signals but cannot handle non-

linear signals. HHT can handle both nonlinear and non-stationary signals. 

 FT and discrete WT do not have the ability to act as a feature extraction tool 

while continuous WT and HHT have. Feature extraction, like identifying the gender 

of speakers, may help tightening the assumption of the fundamental frequency range. 

A summary of comparison between Fourier transform, wavelet transform and 

Hilbert-Huang transform analysis is shown in Table 4. 

 

FT WT HHT 

Basis a priori a priori adaptive 

Frequency 
convolution:  

global 

convolution: 

regional 

differentiation: 

local 

Presentation 

energy-frequency (FT) 

energy-time-frequency 

(STFT) 

energy-time-

frequency 

energy-time-

frequency 

Nonlinear No No Yes 

Non-stationary No Yes Yes 

Theoretical base theory complete theory complete empirical 

Table 4 Comparison between FT, WT and HHT Analysis 

3.9 Comparison and Selection of Different Algorithmic Tools 

In this section, we will have a comparison on all the algorithmic tools 

introduced in this chapter and have a selection of which tools to use in this thesis. 
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Zero-crossing rate is a very simple and fast method for roughly estimating the 

fundamental frequency. It is easy to implement and can be used when a precise 

estimation is not needed. This is used as a comparison reference. 

Auto-correlation function is equivalent to convolution of two vectors if the 

input is a real discrete signal. This applies to our study of Cantonese recordings 

which are real and discrete signals. Hence ACF is also used in this study as another 

comparison reference. 

Fourier transform is a very important tool used by many studies in signal 

processing, frequency detection, pitch detections and forensic science. Thus in this 

study we also implement the STFT using MATLAB. MATLAB has a built-in FFT 

available, which is fast and accurate (in terms of the calculation error, not the 

frequency detection accuracy). 

Cepstrum is included in this study for the fundamental frequency detection 

accuracy experiment. One reason for this is that some female voice recordings in our 

samples were found to have missing fundamental. 

Wavelet transform is an excellent tool for decomposing a signal into wavelets 

which can provide a better understanding of the non-stationary energy trend in the 

signal. But its poor time resolution in lower scale frequency is a big drawback for 

Cantonese pitch detection, which requires a high time and frequency resolution. So, 

wavelet transform is not included in this study.  

The target in this study is to find out the performance of the HHT algorithm 

when applying to the isolated Cantonese syllables for tone recognition. The Hilbert-

Huang transform using WA-BASED EMD is implemented and used in this study. 

Although there are only a few freely available implementations of HHT and none for 

WA-BASED EMD, their promising power of great time and frequency resolution for 

helping to examine the signal is worth trying. 
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3.10 Closing Comments 

In this chapter we have looked at four traditional algorithms: the Zero-

crossing rate, auto-correlation, FT and cepstrum. Their concepts and technical details 

are discussed, with a comparison on their strength and weakness on signal 

processing, speech processing and tone recognition. We have also looked at two 

relatively modern algorithms, the WT and the HHT. Except for WT, the other five 

algorithms are selected. They will be used in this study. In the next chapter, we will 

discuss how these selected algorithms can be used in fundamental frequency 

detection and pitch tracking. A binary classifier called support vector machine will 

also be introduced. 
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CHAPTER 4 

APPLICATION OF THE SELECTED ALGORITHMS 

4.1 Overview 

In this chapter, we look into how the selected algorithms in section 3.9 are 

used for fundamental frequency tracking in this study. In addition, a binary 

classification algorithm called Support Vector Machine (SVM) will be discussed 

also. All the techniques discussed in this chapter are used later, in the experiments 

described in chapter 6. 

4.2 Peak Picking Algorithm 

Peak picking is an algorithm for obtaining global/local maxima/minima for a 

set of data. Figure 12 shows the terms used. For example, peak picking algorithm can 

be used in a spectrum to obtain the fundamental frequency. 

 

Figure 12 An Illustration of The Global/Local Maxima/Minima of a Signal  

For 1-dimensional data like the FFT spectrum, peak picking for global 

maxima/minima is trivial. For local maxima/minima, a common way is to calculate 

the first derivative of the input, and find all the zero-crossing points. The downward-



 

 39 

going zero-crossing points correspond to the local maxima and the upward-going 

zero-crossing points correspond to the local minima. 

Peaks produced by noise could be reduced by applying a threshold to the slope 

of the zero-crossing points, or by applying a threshold to the height difference of the 

peaks and their neighbors. 

4.3 Pitch Tracking Algorithm 

Pitch tracking is the process of determining the continuous trend of the 

fundamental frequency. In speech processing, a voice signal is usually segmented 

using a moving window before the frequency detection algorithm is applied to it. 

Peak picking is applied to each segment separately to obtain the fundamental 

frequency and/or the higher harmonics. The results from each windowed segment 

combine together to form the pitch track of the input signal. 

4.4 Finding the Fundamental Frequency by Counting the Number of Zero-crossing Points 

4.4.1 Overview 

Counting the zero-crossing points of a signal is one of the simplest methods 

for estimating the fundamental frequency. By the definition of frequency and the 

assumption that the waveform of the human voice is quasi-triangular, we can find the 

fundamental frequency of a signal by counting the number of zero-crossing points. 

Since we expect the fundamental frequency of a voice signal may change over time, 

the input voice signal 𝑥(𝑡) is first segmented into short segments, 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛). 

Each of the segments are the same length. A moving window is used with 80% 

overlap between 2 successive segments. The fundamental frequency of each segment 

is then calculated by diving the number of zero-crossing points by the duration of the 

segment in seconds. A pitch track could then be constructed. Figure 13 shows a 

flowchart illustrating this process.  
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Figure 13 An Illustration of Pitch Tracking by Peak Picking Zero-crossing Rate 
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4.4.2 Issues Related to Accuracy 

This method is not robust when handling noisy signals. For the signal with 

low signal to noise ratio (SNR), the zero-crossing rate is heavily affected. A noisy 

signal will generally have a zero-crossing rate much higher than that of a clean 

signal. 

4.5 Finding the Fundamental Frequency by Peak Picking FFT Data 

4.5.1 Overview 

The spectrum obtained using FFT can be used to find the fundamental 

frequency of a signal. For an input signal 𝑥(𝑡) of length N samples, we first apply a 

Hamming window and then the FFT to obtain 𝑋(𝜔). The fundamental frequency 𝐹0 is 

obtained by finding the frequency 𝜔 with the maximum amplitude in the range 80Hz 

to 350Hz (the range of fundamental frequency of Cantonese by native Cantonese 

speaker). Figure 14 shows a flowchart illustrating this process. 

 

Figure 14 Flowchart of Finding 𝑭𝟎 by Peak Picking of FFT Spectrum 

In order to obtain a pitch track of a voice signal, the input voice signal 𝑥(𝑡) is 

first segmented into short segments, 𝑥𝑖 (𝑖 = 1, 2, … , 𝑛), of the same length using a 

moving window with 80% overlap between 2 successive segments. For each segment 

𝑥𝑖, a Hamming window and then the FFT are applied to obtain 𝑋𝑖. The fundamental 

frequency 𝐹0𝑖
 is obtained by finding the frequency 𝜔 with the maximum amplitude in 

the range 80Hz to 350Hz for every 𝑋𝑖 . Then the fundamental frequency track is 

constructed from 𝐹0𝑖
. Figure 15 shows a flowchart illustrating this process. 

𝑥(𝑡) 𝑋(𝜔) 

Apply 
Hamming 
Window 
and FFT 

𝐹0 

Find the frequency 
that has the maximum 

amplitude in range 
80Hz – 350Hz 
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Figure 15 An Illustration of Pitch Tracking by Peak Picking FFT 
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4.5.2 Issues Related to Accuracy 

The accuracy of this algorithm highly depends upon the time and frequency 

resolution of the FFT process. A windowed segment contains N samples, with 

sampling rate 𝑓𝑠Hz. After Fourier Transform, this give N coefficients. Of these N 

coefficients, only the first 𝑁 2⁄  are useful. They represent frequencies from 0 to 

𝑓𝑠 2⁄ Hz. Two consecutive coefficients are spaced apart by 𝑓𝑠 𝑁⁄  Hz. In general, the 

smaller the segment length we have, the larger the separations between two 

consecutive coefficients of the FFT result.  For example, a signal of 4,096 samples 

with sampling rate 16,000Hz gives a FFT of 4096 coefficients, with two consecutive 

coefficients spaced apart by 16,000/4,096 ≈ 3.91𝐻𝑧. Furthermore, a window of 4096 

samples is a segment of length 0.256s for a signal with sampling rate 16,000Hz. In 

the time domain we can obtain ⌊
𝑁𝑥−𝑁

0.2𝑁
⌋ + 1 segments from a voice signal 𝑥(𝑡) of Nx 

samples. On average, the duration of a single Cantonese syllable is about 380 

milliseconds [8]. The resolution in time domain for this example will therefore be 

⌊
(16000)(0.380)−4096

(0.2)(4096)
⌋ + 1 = 3 segments. In order to increase the time resolution in the 

time domain, we can shorten the length of the segments, but this will decrease the 

frequency resolution of the FFT result.  

In the case of a missing fundamental, this algorithm may fail to capture a 

correct value of 𝐹0 due to the fact that it is actually not present or suppressed in the 

FFT result. 

4.6 Finding the Fundamental Frequency by Peak Picking Cepstrum Data 

4.6.1 Overview 

Similar to the algorithm described in the section 4.5, we could estimate the 

fundamental frequency of a signal by locating the local peak in the quefrency 

domain. Figure 16 shows a flowchart of the process. 
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Figure 16 Flowchart of Finding 𝑭𝟎 by Peak Picking Cepstrum Data 

To obtain the pitch track using peak picking of cepstrum of a voice signal 

𝑥(𝑡), a process similar to the algorithm described in section 4.5 is applied. Instead of 

peak picking of the FFT spectrums 𝑋𝑖, a log function is applied to the magnitude of 

𝑋𝑖 and then FFT is applied to that to obtain the cepstrum 𝐶𝑖 for every voice signal 

segment 𝑥𝑖. After that, 𝐹0𝑖
 is obtained by a peak picking process applied to all the 𝐶𝑖. 

The pitch track is hence constructed. Figure 17 shows a flowchart illustrating this 

process.
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Figure 17 An Illustration of Pitch Tracking by Peak Picking Cepstrum 
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4.6.2 Issues related to pitch determination 

As mentioned in previous section 3.5, the sampling space is only a quarter of 

the original voice sample size, which limits the bin size of the cepstrum. Added 

together with the log-scaled quefrency the process of converting quefrency-scaled 

result back into a frequency-scaled result is non-linear. The conversion is not trivial.  

4.6.3 Issues related to accuracy 

One of the advantages of cepstrum analysis over spectrum analysis is related 

to the missing fundamental. As cepstrum indicates the periodicity of a spectrum, it 

can handle signals that are missing the fundamental frequency. A reasonably accurate 

quefrency peak in the cepstrum is present for a signal that is missing its fundamental. 

This is due to the fact that the pattern of separations of higher harmonics provides 

information that is as important as the separation of the first two  harmonics, i.e. the 

not existing fundamental frequency and the second harmonic.  

Despite the ability of the cepstrum method to capture the missing fundamental 

frequency, the quefrency resolution is very limited. FFT with N coefficients is able 

to capture frequency components up to maximum of 𝑁 2⁄ 𝐻𝑧. A cepstrum could only 

detect periodicity of the spectrum up to maximum of 𝑁 4⁄ 𝐻𝑧. 

4.6.4 Issues related to computational cost 

The cepstrum algorithm requires two Fourier transforms before we can obtain 

the pitch track by peak picking. As a result, it requires about double amount of time 

for handling the same signal, comparing to the spectrum method. This could be a 

disadvantage if we want the algorithm to be applied on devices that have less 

computational power such as mobile phones. 
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4.7 Finding the Fundamental Frequency by HHT 

4.7.1 Overview 

EMD decomposes a signal into IMFs, which characterize the frequency 

components composition. To locate the IMF that most accurately represents the 

fundamental frequency component, we need to identify the IMF that has average 

frequency in the range 80Hz to 350Hz (the range of fundamental frequency of 

Cantonese by native Cantonese speaker) and has most of the energy in that range. 

The first step is to obtain the IMFs of the input signal 𝑥(𝑡) using WA-BASED 

EMD described in section 3.7.7. Secondly, we count the number of zero crossing 

points in every IMF and roughly estimate the average frequency. IMFs with average 

frequency higher than 700Hz (twice the highest native Cantonese speaker 

fundamental frequency) are discarded. Then the percentage of power of the possible 

candidates relative to the original signal is calculated. A Hilbert transform is then 

applied to the candidate with the highest relative power percentage to obtain  energy-

time-frequency spectrum. The high-energy components form the fundamental 

frequency pitch track. Figure 18 shows a flowchart of the process. 

 

Figure 18 Flowchart of Finding Pitch Track of a Voice Signal by HHT 

4.7.2 Issues related to accuracy 

The resolution of the frequency track obtained with this method is much 

higher than those obtained with the spectrum method and the cepstrum method. By 

the nature of this decomposition, high frequency noise is usually extracted in the 
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first iteration as the first IMF, which has the highest average frequency. As the 

result, the sifting process is robust against noisy inputs. 

As the EMD is empirical, the possible decompositions of a signal could be 

more than one depending on the choice of the envelope creation method, local mean 

estimation method and stoppage criteria. There is no unique decomposition  for a 

signal, hence no best IMF selection algorithm available.  

4.8 Support Vector Machine 

Support vector machine (SVM) is a tool used in machine learning. SVM is a 

supervised learning model that was invented by Vladimir N. Vapnik in 1992  [24]. 

SVM takes a set of training data as input and returns a trained model that can 

classify new data into 2 classes: 1 or -1. The training set contains a group of 𝑛 data 

points. Each data point is viewed as a 𝑝-dimensional vector and is labeled with either 

class 1 or class -1. Formally it is expressed as: 

𝕯 = {(𝒙𝒊, 𝒚𝒊)|𝒙𝒊 ∈ ℝ𝒑, 𝒚𝒊 ∈ {𝟏,−𝟏}}
𝒊=𝟏

𝒏
 

Equation 16 A set of n p-dimensional points with label 

By the definition above, the classification problem is transformed into a 

geometry problem which finds the existence of a (𝑝-1)-dimensional hyperplane that 

can separate the 𝑛  points into 2 classes. There may be more than one such 

hyperplane, among those the best choice is the one with largest margin between the 2 

classes. This best hyperplane is called maximum-margin hyperplane, which has its 

margin maximized to the closest data points in each of the 2 classes.  

Figure 19 shows an example of a group of 16 classified data points separated 

by 3 different hyperplanes. While 𝐻1 failed to separate the points into 2 classes, both 

𝐻2  and 𝐻3  separated the 16 points into 2 groups of 8 points as desired. 𝐻3  is the 

maximum-margin hyperplane, since the distance is maximized to the  two points from 

each class that is nearest to it.  
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A hyperplane could be expressed as:  

𝒘⃗⃗⃗ ∙ 𝒙⃗⃗ − 𝑏 = 0 

where 𝑤⃗⃗  is the normal vector of the hyperplane and ∙  is the dot product 

operation. 

 

Figure 19 An example of 3 hyperplanes that separate a group of data 

points into 2 groups 

The margins of the maximum-margin hyperplane are two hyperplanes 

expressed as: 

𝒘⃗⃗⃗ ∙ 𝒙⃗⃗ − 𝑏 = 1 and 𝒘⃗⃗⃗ ∙ 𝒙⃗⃗ − 𝑏 = −1 

The distance between the two margins is 
2

‖𝒘⃗⃗⃗ ‖
 . No data points fall between the 

region (an n-dimensional subspace) bounded by the two margins.  
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We can form an optimization problem for finding the maximum-margin 

hyperplane with the constraints: no data points fall between the margins of the 

maximum-margin hyperplane. 

Listing 3 Optimization Problem of Finding the Maximum-margin Hyperplane 

In order to solve the optimization problem, we transform ‖𝒘⃗⃗⃗ ‖ into 
1

2
‖𝒘⃗⃗⃗ ‖2 to 

avoid the square root operation in evaluation of ‖𝒘⃗⃗⃗ ‖.  

The trained model can now classify any new data points with the hyperplane 

found, by testing the result of 𝒘⃗⃗⃗ ∙ 𝑥 − 𝑏 which is the same as the region it falls into. 

Then we can solve the problem with quadratic programming optimization. 

MATLAB has an implementation of SVMs: the functions svmtrain() and 

svmclassify()[25]. For the rest of this thesis, unless mentioned explicitly, it is 

assumed that the SVM model used is from MATLAB. 

4.9 Closing Comments 

In this chapter we discussed the techniques that will be used later in this study. 

Pitch tracking algorithm with zero-crossing rate, auto-correlation, FT, Cepstrum and 

HHT have been discussed. The binary classification tool SVM is introduced. In the 

next chapter, we will have a literature review of related work for Cantonese tone 

recognition and Hilbert-Huang transform. 

  

Minimize ‖𝒘⃗⃗⃗ ‖ 

in 𝒘⃗⃗⃗ ∙ 𝒙⃗⃗ − 𝑏 = 0 

subject to 𝑦𝑖(𝒘⃗⃗⃗ ∙ 𝑥𝑖 − 𝑏) ≥ 1 (𝑖 = 1,… , 𝑛) 
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CHAPTER 5 

RELATED WORK 

5.1 Overview 

In this chapter, we will have a look at related work on Cantonese tone 

recognition and HHT. 

5.2 Human Voice Model 

One of the most important studies in speech processing is the simplified 

human voice model first proposed in 1970 by Gunnar Fant [5]. The study examined 

how the human voice is produced. Fant proposed a simple and concrete approximate 

mathematic model describing it. The model is called the source-filter voice model. 

Figure 20 is an illustration of the model. Fant proposed that the human voice is a 

combination of a slow-changing pulse train with a stable frequency and a filter 

response imposed by the vocal tract. For research in tone recognition, we are mostly 

interested in the pulse train. The tone of a syllable is based on the fundamental 

frequency. 

 

Figure 20 An Illustration of the Source-Filter Model proposed by Fant [26] 
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5.3 Cantonese Voice Samples 

In 1998, the Digital Signal Processing & Speech Technology Laboratory of 

CUHK has developed a corpus for Cantonese [27]. The corpus is named as CUSYL. 

The corpus covers 1801 different Cantonese tonal syllables. The data is collected 

from 2 male and 2 female speakers [28]. 

5.4 Mandarin Tone Recognition of Isolated Syllables 

In the 1990s, research by W.-J, Yang et al in tone recognition of isolated 

Mandarin syllables with Hidden Markov model and vector quantization achieved a 

speaker-independent recognition rate of 96% accuracy [29]. The high rate of tone 

recognition of Mandarin syllables is achieved in part because the pitch contours are 

quite different between the 4 Mandarin tones [30]. 

 

Figure 21 An Illustration of the 4 Mandarin Tones [31] 

In 2006, L. Tang improved the speaker-independent recognition rate to 

96.64% accuracy for 4 Mandarin tones in Mandarin tone recognition based on pre-

classification [32]. 

5.5 Cantonese Tone Recognition of Isolated Syllables 

Unlike Mandarin tone recognition, the accuracy of tone recognition of isolated 

Cantonese syllables is comparatively much lower. In 'Tone Recognition of Isolated 

Cantonese Syllables' by Tan Lee in 1995 [33], a 3-layer feed-forward neural network 
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is used to classify the suprasegmental feature parameters extracted from the voiced 

portion of a monosyllabic Cantonese utterance. With a training set of 234 syllables, 

the algorithm showed 87% accuracy for single speaker, speaker-dependent 

classification of the 9 Cantonese tones. The experiment only covered about 20% of 

the 1761 Cantonese syllables. The accuracy rate may drop if more syllables were 

considered. 

 

Figure 22 The Multi-layer Perceptron used by Tan Lee. The inputs from top to 

bottom are: normalized duration, normalized energy drop rate, normalized 

average pitch of initial, normalized average pitch of final and the pitch rising 

index respectively. 

In 2004, in Tone recognition of continuous Cantonese speech based on 

support vector machines [34], Gang Peng and William S.Y. Wang proposed an 

adaptive log-scale 5-level F0 normalization schema to reduce the tone-irrelevant 

variation of F0. They achieved a Cantonese tone recognition rate of 71.5% for tones 1 

to 6. 



 

 54 

5.6 Cantonese Tone Recognition of Continuous Speech 

In 2004, in Tone recognition in continuous Cantonese speech using supratone 

models, Y. Qian achieved 74.68% accuracy for 6 Cantonese tones speaker-

independent recognition [35]. 

5.7 Hilbert-Huang Transform 

The Hilbert-Huang Transform (HHT) was developed by Huang in 1998 [20]. It 

is an empirical algorithm instead of a theoretical tool. HHT is a general algorithm 

developed to examine a signal that is non-stationary and nonlinear. It decomposes 

the signal into so-called intrinsic mode functions (IMF) and obtains the 

instantaneous frequency. The decompose algorithm, Empirical Mode Decomposition 

(EMD), works in the time domain and is adaptive, which makes it very efficient . 

In 2011, Li et al. improved the EMD algorithm and proposed the Windowed 

Average-based EMD [3]. It mainly improved the mode-mixing issues that occur in 

the IMFS in the original EMD. By reducing the mode-mixing that occurs in the 

IMFs, the resulting frequency tracks are more accurate. 

5.8 Closing Comments 

In this chapter, we have reviewed some related work on Cantonese tone 

recognition and HHT. In the next chapter, we will go through the main part of this 

study. The objective, methodology and experiment details and their results will be 

discussed. 
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CHAPTER 6 

OBJECTIVE, METHODOLOGY AND EXPERIMENTS 

6.1 Overview 

In this chapter, firstly the objectives are explained in section 6.2. Then the 

methodology is discussed in section 6.3. After that, in section 6.4 to 6.7, we describe 

the details of the experiments, their results and analysis. 

6.2 Objective 

The main objective of this study is to explore the application of Hilbert-Huang 

Transform to Cantonese tone recognition. We will examine how the Hilbert-Huang 

Transform performs in fundamental frequency detection. We would also assess the 

use of the ‘best’ parameters and procedural details of the WA-BASED EMD of HHT, 

which may improve its performance on Cantonese voice samples.  Lastly we will 

combine the HHT with the SVM to try to improve the tone recognition performance. 

6.3 Methodology 

To achieve the objective, a series of four experiments were devised. Here is a 

quick summary of the four experiments:  

Experiment 1. Comparison of the accuracy of different pitch tracking 

algorithms to determine the best algorithm 

Experiment 2. Comparison of accuracy for FFT, EMD and WA-BASED EMD 

when applied to Cantonese voice signals, to determine the best algorithm 

Experiment 3. Varying various parameters for the WA-BASED EMD algorithm 

to improve its performance on Cantonese 

Experiment 4. Assessment of Cantonese tone recognition using HHT and 

support vector machines 
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Experiment 1 was devised to test the accuracy of four traditional fundamental 

frequency detection algorithms when used in pitch tracking.  In this experiment, sine, 

triangle and sawtooth waves with fundamental frequency ranging from 80Hz to 

700Hz are used. The range 80Hz to 700Hz is chosen to simulate the typical human 

voice fundamental frequency range. A synthesized signal is used for testing instead 

of real voice samples because we want to focus on examining the accuracy of the 

algorithms with respect to the frequency. After that, the algorithm that performs the 

best is selected and is used in the second experiment as a comparison base. 

The second experiment focuses on testing the accuracy of EMD and WA-

BASED EMD compared to the traditional algorithms. The best algorithm in the first 

experiment will be used as a comparison base. In this experiment, we will examine 

the accuracy of the three algorithms when they are applied to real Cantonese voice 

samples. 

The third experiment aims to further improve the accuracy of the WA-BASED 

EMD of HHT. In this experiment, we try varying various parameters and procedural 

details of WA-BASED EMD with Cantonese voice samples. The set of the ‘best’ 

parameters that gives the ‘best’ result will be used in the next experiment.  

The fourth and final experiment aims to examine the performance of HHT 

with WA-BASED EMD as a tone recognition tool together with a simple binary 

classifier. This experiment uses support vector machines as binary classifiers. 

Random voice samples from the CUSYL corpus are used to trains six SVMs. Each of 

the SVM classifies one of the six tones. Then, random voice samples from the 

CUSYL are used to test the accuracy of the SVMs.  

In the following sections, we will go through the details of the four 

experiments. 
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6.4 Experiment 1 Assessment of Traditional Pitch Tracking Algorithms 

6.4.1 Details of Experiment 1 

In this experiment, pitch tracking algorithm using four algorithms are 

assessed: zero-crossing rate, auto-correlation, FFT and Cepstrum. To compare the 

accuracy of the four different pitch tracking algorithms, 621 sets of simple sine 

wave, triangle wave and sawtooth wave ranging from 80Hz to 700Hz are generated 

for input test signals, producing a total of 1863 input signals. The four algorithms are 

applied to each of the test signals. The wave signals were generated using MATLAB 

with a sampling rate of 44100Hz. For auto-correlation, FFT and Cepstrum methods, 

the window size is 2048 samples, and the overlap is 80%. The mean absolute 

percentage error rates are determined and compared. 

6.4.2 Experimental Results of Experiment 1 

See Figure 23 for an example result. It shows a 200Hz sine wave with 

duration of 250ms together with the results of the pitch detection by autocorrelation 

(AUTO), FFT, Cepstrum (CEPS) and zero-crossing (ZC). REF is the frequency used 

to generate the signals. Table 5 gives a summary of the performance of the four 

algorithms for this specific sine wave example. 
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Figure 23 A 200 Hz sine wave in the time domain (upper diagram) and (lower 

diagram, from top to bottom), the reference (REF),  and the pitch detection 

results using auto-correlation (AUTO), FFT, Cepstrum (CEPS) and zero-

crossing (ZC) 
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Algorithm Mean of Measured Frequency (Hz) Mean Absolute Percentage Error (%) 

AUTO 198.65 0.675 

FFT 199.18 0.41 

CPES 191.80 4.1 

ZC 188.20 5.9 

Table 5 Mean of Measured Frequencies of AUTO, FFT, CEPS and ZC and the 

Mean Absolute Percentage Error of Each Method. These Results are for a 

Specific Signal, which is a 200Hz Sine Wave. 

Mean absolute percentage error rates of the four methods are shown in Table 

6, Table 7 and Table 8 for the sine wave, triangle wave and sawtooth wave sets 

respectively. 

Algorithm Mean Absolute Percentage Error (%) 

AUTO-CORR 1.06 

FFT 0.89 

Cepstrum 1.43 

Zero Crossing 1.24 

Table 6 The Mean Absolute Percentage Error of AUTO-CORR, FFT, Cepstrum 

and Zero-crossing Pitch Detection for 621 Sine Wave Input Signals 
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Algorithm Mean Absolute Percentage Error (%) 

AUTO-CORR 2.01 

FFT 0.85 

Cepstrum 1.37 

Zero Crossing 1.32 

Table 7 The Mean Absolute Percentage Error of AUTO-CORR, FFT, Cepstrum 

and Zero-crossing Pitch Detection for 621 Triangle Wave Input Signals 

Algorithm Mean Absolute Percentage Error (%) 

AUTO-CORR 2.30 

FFT 0.88 

Cepstrum 1.57 

Zero Crossing 1.33 

Table 8 The Mean Absolute Percentage Error of AUTO-CORR, FFT, Cepstrum 

and Zero-crossing Pitch Detection for 621 Sawtooth Wave Input Signals 

6.4.3 Conclusion of Experiment 1 

From the experimental results, it can be seen that FFT scored the lowest mean 

absolute percentage error rate in fundamental frequency detection amongst the four 

algorithms assessed, in all the three categories of waveform tested. As a result, FFT 

is used as a comparison base for experiment 2. 
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6.5 Experiment 2 Assessment of Modern Pitch Tracking Algorithms 

6.5.1 Details of Experiment 2 

The best algorithm from experiment 1, FFT, together with EMD and WA-

BASED EMD are further assessed in this experiment. A randomly selected 4 voice 

samples of each of the 6 Cantonese tones being considered, in total 24 voice samples, 

are taken from the CUSYL corpus. The ground truth fundamental frequency tracks of 

the 24 voice samples are firstly measured manually, to provide a comparison 

reference. The ground truth fundamental frequency tracks are obtained by importing 

the voice sample into MATLAB, and zooming in close enough so that the period 

pattern can be manually recognizing. For each period pattern recognized, the period 

length is measured ‘by hand’ and the frequency is calculated accordingly. 

The three algorithms are applied to the 24 voice samples. For EMD and WA-

BASED EMD, the IMF that has a frequency closest to the fundamental frequency of 

the input is selected for subsequent detailed analysis. The resulting frequency tracks 

are then compared to the ground truth frequency tracks obtained manually. The mean 

absolute percentage error rates are determined and compared. 

For this experiment, the FFT used a window size of 2048 samples. Using an 

overlap of 80%, this results in approximately 39 windows per second. The stoppage 

condition for both EMD and the WA-BASED EMD are a fixed number of 12 

iterations. The initial frequency guess needed for WA-BASED EMD is obtained by 

averaging the 6th to 10th windowed FFT’s result of the voice sample. The reason to 

choose this range of windows is because all of the 24 voice samples have their 

voiced part starting there, confirmed by manual inspection. 

6.5.2 Experimental Results of Experiment 2 

Table 9 shows the performance of the three different algorithms, when 

compared to the manually measured fundamental frequencies of the 24 selected voice 

samples. The performance is calculated in terms of mean absolute error rate.  
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Algorithm Mean Absolute Percentage Error (%) 

FFT 1.03 

EMD 0.99 

WA-BASED EMD 0.76 

Table 9 The Mean Absolute Percentage Error of FFT, EMD and WA-BASED 

EMD for 24 Cantonese Voice Samples 

From the experimental results, WA-BASED EMD improved the accuracy of 

the pitch tracking of the fundamental frequency of Cantonese voice samples  by an 

average of 26%. Similar to the results of English and Mandarin, WA-BASED EMD is 

relatively more accurate in fundamental frequency detection. 

In order to further improve the accuracy of WA-BASED EMD on the 

Cantonese voice samples, the following study, experiment 3, is carried out for 

varying the initial conditions and stoppage conditions to determine the ‘best’ 

parameters. 

6.6 Experiment 3 - Assessment of Various Parameters of WA-BASED EMD 

6.6.1 Details of Experiment 3 

In this experiment, various parameters of the WA-BASED EMD are assessed. 

The 24 voices samples used in experiment 2 are used again in this experiment. The 

WA-BASED EMD algorithm is applied to all of the voice samples with varying 

parameters. The ‘best’ set of parameters will be used in a following experiment, 

experiment 4. 
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The two components of the WA-BASED EMD that are assessed are: 

Part 1. The method for deciding the initial guess of the signal 

fundamental frequency 

Part 2. The stoppage condition for the sifting process mentioned in 

section 3.7.4 

6.6.1.1 Part 1: Varying the method for deciding the initial guess of the signal fundamental 

frequency for WA-BASED EMD 

In order to ‘kick start’ the WA-BASED EMD, an initial guess of the 

fundamental frequency is needed. In this experiment, the initial guess is automated 

by performing peak picking of FFT on the first few windows of the signal to obtain a 

rough value of the initial fundamental frequency of the whole signal. The choice of 

the initial guess affects the IMFs obtained.  

Three different methods are tried, together with the method used in 

experiment 2, to obtain the ‘best’ method of initial guessing of the fundamental 

frequency needed for the WA-BASED EMD for Cantonese syllables. The guessing 

methods are: 

Guessing Method 1. Use the average fundamental frequency of the 6 th to 10th 

windows of the signal (used in experiment 2). For each window, the 

fundamental frequency is obtained by peak picking FFT of the signal, with a 

window size of 2048 samples 

Guessing Method 2. Use a fixed value of 300Hz, which is about the middle of 

the human voice fundamental frequency range 

Guessing Method 3. Use the average fundamental frequency of the first 5 

windows derived by peak picking FFT of the signal, with a window size of 

2048 samples 
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Guessing Method 4. Use the fundamental frequency of the central 5 windows 

of the voice sample. The fundamental frequency is obtained by a peak picking 

FFT of that part of the signal, with a window size of 2048 samples 

Guessing method 4 is expected to be the best amongst the 4 proposed 

methods. This is because in general we believe the middle most part of a voice signal 

contains the most representative fundamental frequency information. 

6.6.1.2 Experimental Results of Part 1 of Experiment 3 

The 4 guessing methods described in the previous section are applied to the 24 

voice samples and the resulting IMFs are obtained. It was found that the second IMF 

has a result closest to the actual fundamental frequency. So the second IMF is taken 

for detailed analysis. The performance of the 4 guessing methods is tabulated in 

Table 10. 

Guessing Method Mean Absolute Percentage Error (%) 

Guessing Method 1 0.72 

Guessing Method 2 2.95 

Guessing Method 3 0.65 

Guessing Method 4 0.95 

Table 10 Performance of various guessing methods for initial guessing of 

fundamental frequency for WA-BASED EMD 

In section 6.6.1.1 guessing method 4 was predicted to be the one that would 

give the most accurate resulting IMFs. It turns out this method is only a second 

runner up amongst the 4 proposed guessing methods. The result of guessing method 

2 shows the great impact of the initial guess on the accuracy of the IMFs. Guessing 

method 3 indicates that, for Cantonese, instead of the frequency of the voiced part, 

the WA-BASED EMD algorithm works better when using the frequency of the first 
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part of the signal for the initial guess. As a result, guessing method 3 is chosen as the 

default approach used in part 2 of experiment 3 (see next section) and experiment 4. 

6.6.1.3 Part 2: Varying the stoppage conditions for the sifting process in WA-BASED EMD 

As mentioned in section 3.7.4.1, there are many different stoppage conditions 

that could be used in the sifting process. Different stoppage conditions will be tested 

and the effect of them on WA-BASED EMD will be studied in this part of the 

experiment. All the WA-BASED EMD applied in this experiment uses guessing 

method 3 (i.e., average of the first 5 windows of peak picking FFT) for initial 

guessing. 

The following stoppage conditions are tested:  

Stoppage Condition 1. A fixed number of 6 iterations of sifting rounds 

Stoppage Condition 2. A fixed number of 12 iterations of sifting rounds (used 

previously in experiment 2) 

Stoppage Condition 3. A fixed number of 24 iterations of sifting rounds 

Stoppage Condition 4. The sum of difference threshold method proposed by the 

original author of HHT, Norden E. Huang [20] 

Stoppage Condition 5. 6 consecutive sifting rounds that have (i) residuals with 

equal numbers of zero-crossing points and extrema or (ii) residuals with zero-

crossing points and extrema at most differs by one, has occurred 

Stoppage Condition 6. 12 consecutive sifting rounds that have (i) residuals with 

equal numbers of zero-crossing points and extrema or (ii) residuals with zero-

crossing points and extrema at most differs by one, has occurred  

The above stoppage methods are used in the WA-BASED EMD for the 24 

voice samples and the resulted IMFs are obtained. The second IMF, which has the 

fundamental frequency closest to the fundamental frequency as mentioned in section 
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3.7.7, is selected for detailed analysis. Besides the mean absolute percentage error 

rate, the time used for each sifting process is also recorded. 

6.6.1.4 Experimental Results of Part 2 of Experiment 3 

The performance of the 6 stoppage conditions is tabulated in Table 11. 

Stoppage Condition 
Time Used  

for Sifting 

Mean Absolute  

Percentage Error 

Weighted  

Improvement 

Measure 

(col. 3 / col. 2) 

Stoppage Condition 1 0.79s (1x) 0.98% (+0%) 0% 

Stoppage Condition 2 1.34s (1.70x) 0.77% (+21.4%) 12.59% 

Stoppage Condition 3 

Stopp 

2.82s (3.57x) 0.78% (+20.4%) 5.71% 

Stoppage Condition 4 3.74s (4.73x) 0.80% (+18.4%) 3.89% 

Stoppage Condition 5 2.91s (3.68x) 0.79% (+19.4%) 5.27% 

Stoppage Condition 6 5.21s (6.59x) 0.73% (+25.5%) 3.87% 

Table 11 Performance of various stoppage conditions. (Nx) in the second column 

shows the amount of time used relative to the quickest result.  (+M%) in the 

third column shows the percentage improvement relative to the worst result.  

The weighted improvement is the relative percentage improvement divided by 

the extra amount of time spent. 

Amongst the 6 stoppage conditions tested, stoppage condition 1 was the 

fastest but had the worst accuracy. In contrast, stoppage condition 6 has the best 

accuracy but it takes more than 6 times more time than stoppage condition 1 to 

complete the sifting process. In order to compare the performance more accurately,  a 

weighted improvement rate is used. This is shown in the last column of the table.  

The weighted improvement measure is calculated by dividing the relative percentage 

improvement by the extra amount of time spent compared to stoppage condition 1 

(the fastest but least accurate condition). Stoppage condition 2 has the highest 
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weighted improvement measure. It clearly outperforms the other methods. As a 

result, stoppage condition 2 is chosen as the default parameter for the next 

experiment, experiment 4. 

6.6.2 Conclusion of Experiment 3 

4 initial guessing methods and 6 stoppage conditions are assessed. From the 

experimental results described previously, initial guessing using the first 5 windows 

of the peak picking FFT of the signal is the ‘best’ method. Among the 6 stoppage 

conditions, a fixed number of 12 iterations in the sifting round is the ‘best’. These 

two approaches are chosen as the default for WA-BASED EMD for experiment 4. 

6.7 Experiment 4 Assessment of Cantonese Tone Recognition with HHT and SVMs 

6.7.1 Details of Experiment 4 

In this experiment, the method proposed in section 6.3 of using HHT and 

SVMs for Cantonese tone recognition is assessed. There are 272 syllables with an 

entering tone in the corpus. For each speaker, we have a total of 1530 voice samples 

from tone 1 to 6. We used data from 1 speaker as the training set and the other 3 

speakers as the testing set. 

HHT with the ‘best’ parameters obtained in experiment 3 (section 6.6) are 

applied to all the voice samples. Pitch tracking algorithm is applied accordingly. 

Figure 24 shows the averaged energy distributions of the resulting pitch tracks for 

each tone, with a normalized duration. In the figure, we can clearly see that the 

energy of the tracks is mainly in the middle third of the entire track. For all pitch 

tracks, 13 points of interest (POIs) are taken from each of the pitch tracks. The POIs 

are evenly distributed across the middle third of the pitch tracks, which covers most 

of the area that representing the useful contours. 
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Figure 24 The Averaged Energy Distribution of the 6120 Pitch Tracks, for the 6 

Cantonese Tones. The Duration is Normalized to 800 Samples. 

The POIs together with their tone information are used as the training input 

for SVM considered in section 4.8. 6 SVMs are used to perform the training. The 

training consists of 6 classifications, where the inputs are classified as: 

Class 1. Tone 1 and not tone 1 

Class 2. Tone 2 and not tone 2 

Class 3. Tone 3 and not tone 3 

Class 4. Tone 4 and not tone 4 

Class 5. Tone 5 and not tone 5 

Class 6. Tone 6 and not tone 6 
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After the training of the 6 SVMs is completed, the 4590 voice samples from 

the other 3 speakers are used as the testing set. 

Four runs of training and testing procedure is processed. Each speaker is used 

once as the training set. For each subsequent assessment, the speaker used for 

training is rotated. Classification accuracies of all the 4 runs are then averaged and 

recognized as the final result. 

6.7.1.1 Experimental Results of Experiment 4 

The result is shown in Table 12. The column ‘Recognized As X’ is the 

averaged number of testing voice samples that are classified by more than 1 SVM.  

Tone 
Recognized As 

Accuracy (%) 

1 2 3 4 5 6 X 

1 732.25 4.0 164.75 1.0 6.0 70.0 20.0 75.38 

2 0.25 782.25 0.5 21.5 129.0 20.5 10.0 81.15 

3 90.75 1.0 606.5 1.0 0.5 64.75 19.5 77.36 

4 15.5 9.5 19.25 644.25 20.25 17.0 5.25 88.13 

5 18.0 20.0 13.75 8.25 339.0 10.5 4.5 81.88 

6 49.25 2.0 130.25 2.25 2.75 493.25 19.25 70.57 

        79.08 (Averaged) 

Table 12 The Averaged Accuracy of the trained SVMs. 

The recognition rate of the tone 2, 4 and 5 are comparatively higher than that 

of the other 3 tones. The most likely reason is that tones 1, 3 and 6 are all level 

tones, which are easily confused with each other. Tones 2, 4 and 5 have a contour 

shape which is sufficiently distinct from the other 5 tones, which gives an easier 

classification task. The average 79.08% accuracy is good but there is a big room for 
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improvement when compared to the outstanding tone recognition rate of 96% in 

Mandarin. 

6.7.2 Closing Comments 

In this chapter, we have defined the objective of this study. The proposed 

methodology with a series of 4 experiments is described. After that, the details of the 

4 experiments and their experiment results are shown. In the next chapter, we will 

give a final conclusion for this study and suggest possible future directions. 

  



 

 71 

CHAPTER 7 

CONCLUSION 

In this study, we have investigated the application of the HHT with WA-

BASED EMD to Cantonese tone recognition. A series of 4 experiments have been 

designed and implemented. From experiment 1 and 2 results (discussed in section 

6.4.2 and section 6.5.2), the WA-BASED EMD was found to have a higher accuracy 

for fundamental frequency detection when compared to FFT. It also has a higher time 

resolution. 

From the results of experiment 3 (discussed in section 6.6), we have obtained 

a set of ‘empirically the best’ parameters for the Cantonese syllables needed for the 

WA-BASED EMD algorithm. 

In experiment 4 (discussed in section 6.7.1), by using the HHT as a pitch 

tracking tool together with SVMs as binary classifiers, we have achieved a 79.08% 

accuracy for speaker-independent tone recognition for Cantonese syllables. 

Analyzing Cantonese tones is a very hard task due to the high similarity in the 

contours in the majority of the tones. 

A possible improvement is to increase the number of points of interest (POIs) 

for the training set. By doing so we can increase the level of separation of the POIs 

in the hyperspace. As a result, one will have a higher chance to find a clearer 

hyperplane that separates the data. A further possibility could be to try out the 

optimal number of POIs. Generally speaking, increasing the POIs is an obvious way 

to increase the SVM’s classification performance. However, the higher number of 

POIs used to train the SVMs, the much longer time is needed for the training of the 

SVMs to be completed. Also, the performance on the classification when applied in a 

real system may be impractical. If we use too many POIs, it implies an increase of 

computational power for classifying the input. 

Another possible improvement is to change the way of choosing the POIs 

amongst the pitch tracks. In our experiment, we used 13 evenly distributed POIs in 

the middle third of the pitch tracks. This is because we believe the voiced part of the 
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signal is the main component of the tone contour. Many other possible schema are 

possible. 

Although the accuracy we achieved is not very outstanding, the experiments 

on HHT applied to Cantonese syllables exhibits a promising improvement in the 

spectrum for both of the time and frequency resolution. It is definitely useful for 

other speech processing task, for example the Cantonese syllable recognition and the 

speaker identification. 
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