
2014 spring semester

CSIT6910 Independent Project Report

—Implementation of Snake and its AI

Supervisor: Dr. David Rossiter

Student: LI Zhi

1

Table of Contents

ABSTRACT .. 2

1. INTRODUCTION .. 3

2. GAME DESIGN AND IMPLEMENTATION 5

2.1 Elements and their roles ... 5

2.2 Rules .. 8

3. AI DESIGN AND IMPLEMENTATION ... 9

3.1. Requirements ... 9

3.2. Ideas ... 9

3.3. Implementation .. 13

4. POSSIBLE FURTHER WORKS.. 17

5. SUMMARY .. 19

Appendix ... 20

Meeting Minutes ... 20

2

ABSTRACT

Traditional snake is a video game, which is easy to play. The rough

idea is the player controls a ‘snake’ in the board to eat ‘foods’. It is

pretty interesting and owns a large number of fans. To make it

accessible to most player, we implement it as a web game, so that at

any time the game player just need a browser.

While, sometimes it could be quite boring if the player play a game

without a competitor. So, to make the game more exciting, we add

another ‘snake’ to the board, which is under control of computer.

Nevertheless, the game becomes harder and harder with the ‘snake’

keeps on growing, therefore a sophisticated artificial intelligence is

required to make the computer more powerful, so that it can compete

with the human beings. There are numbers of questions that we have

to consider to design a nice artificial intelligence. For instance, does

the shortest path to the food always means the best solution? We will

3

discuss these questions later on.

So, this project aims to implement the game – Snake, with two modes:

single player mode and player VS AI mode. The artificial intelligence

of the game is the most complex part of this project. It involves graph

theory, gaming theory, decision tree and so on.

1. INTRODUCTION

Snake is a video game which originated during the late 1970s in arcades.

To be precise, it is a concept, without details. Therefore there is no

definitive version of the game. As a result, there are various versions of

implementations for this game. Figure 1 shows a version of Snake. After it

became the standard pre-loaded game on Nokia mobile phones in 1998,

there was a resurgence of interest in the game as it found a larger audience.

Thus, the Nokia version is used as the reference for the design of our Snake.

4

Figure 1: One version of Snake

With a quick glance, most people would take this game as a simple game,

which does not require sophisticated strategies. Admittedly, it is quite easy

for the player at earlier stage, as paths are obvious and obstacles are few.

While, it does require advanced strategies when the ‘snake’ is long enough,

due to inconspicuous solutions and increasing number of obstacles(the

body of the ‘snake’ itself is also consider as obstacles, and with the game

going, it increases, which means more obstacles are generated). As shown

in Figure 2, the game is quite complex. So, to design a good AI will be the

most challenge and important part of this project.

5

Figure 2: a complex situation of the game.

2. GAME DESIGN AND IMPLEMENTATION

2.1 Elements and their roles

a) Cell:

 Description: a cell is the basic unit in this game. It defines

the minimal space that an element should take.

 Implementation: it is a concept. While in the game, it is

equivalent to a point, which contains information of its

6

coordinate.

b) Board:

 Description: an N*M board, with N stands for width and

M stands for height (typically, N = M), defines the place

that the game plays on.

 Implementation: it is implemented using a two

dimensional array. Each element in the array is a cell, so

it contains N*M cells.

 Actions: 1. Refresh: with the game goes on, it will keeps

on updating the information of the game; 2. Clear: while

restart the game, board will clear all other elements on it

and initialize the game.

c) Food:

 Description: at each time of the game, there is a food in

the board. Typically, it occupies a cell.

 Implementation: as descript it is occupies a cell, therefore,

we use point to descript it. That is to say, a food is

implemented as a point.

 Actions: Generating: 1. in the beginning, a food is

generated; 2. when a food is eaten by the snake, another

7

food will be generated.

d) Snake:

 Description: a snake is the leading actor of the game. It is

under the control of player or computer. It has a body

front with head and will occupies n cells, where n is the

length of the snake.

 Implementation: a one dimensional array ‘a’, which

records cells that the snake takes. The head of the snake

is ‘a [0]’.

 Actions: 1. Moving: A snake has to keep on moving at a

speed and each step take a cell;

 2. Eating: A snake can eat the food in the

board;

 3. Growing: A snake will increase its length

by one, after it eat a food;

 4. Die: A snake will die if it hits an obstacle

or edge of the board.

e) Obstacle:

 Description: an obstacle is a cell or a list of cells. It cannot

be pass through. Thus, if a snake tries to pass through

8

obstacles, it will die.

 Implementation: similar to snake, it is implemented by a

one dimensional array o. By definition, the body of the

snake is also consider as obstacle.

 Action: Generating: with different level of difficult, the

patterns of obstacles are diverse. (Note: obstacles, except

body of the snake, are not generated dynamically. It is

generated by the pre-set pattern)

2.2 Rules

a) When does snake die: 1. Hit obstacles

 2. Hit itself

3. Hit the edge (also called wall)

4. Hit the other snake (player VS

computer mode)

b) When win: 1. in single mode, exceed a given score

 2. in player VS computer mode, the one that

exceed a given score

 3. In player VS computer mode, if one snake die,

the other one wins the game.

9

3. AI DESIGN AND IMPLEMENTATION

3.1. Requirements

There are mainly 2 aspects that we should take into

consideration in the design of AI:

1. Safe: the AI should guarantee the snake lives for a long time.

Which means each step should be safe not only temporally,

but also for a long run.

2. Competitive: the AI should also be able to make the snake

more competitive, while competing with human being. For

instance, typically a shortest path strategy is consider better

than longest path strategy.

3.2. Ideas

To meet the requirements of design, there are several strategies

that are provided:

1) Shortest path: the shortest path to the food should be

consider as a base for the AI to make decision, especially at

the earlier stage of the game. At the earlier stage, typically,

the best solution is the shortest path to the food, as it is

10

unlikely that these movements will lead the snake into a

dangerous situation.

2) Safe path: sometimes the pure shortest path strategy would

lead the snake die. As shown in figure 3, if the snake using

shortest path, it will die, as it blocks itself. So a safe guaranty

path would play a role in this situation. As you can see, the

snake find that if it eats the food, it would be extremely

dangerous, so it decide to ‘give up’ the food.

Figure 3. Avoid blocking

3) Game and evaluation function: a more advanced AI should

also take the competitor in to consideration. Meaning that, it

should not only make itself into a nice situation, but also tries

11

to make its competitor into an embarrassed stage. Suppose

there is an evaluation function EVA (snake &s). So the aim is

increase EVA (AI) and decrease EVA (PLAYER). However, to

design an evaluation function could be extremely hard and

sometimes the result is not that good as the evaluation could

consider too many issues, while in different situation, the

weight of different aspects may also change. To simplify the

problem, we come up with several strategies:

a) Strategic give up: it is similar to gambit. A gambit is a

chess opening in which a player, more often White,

sacrifices material, usually a pawn, with the hope of

achieving a resulting advantageous position. Although

Snake is not as complex as chess, this methodology can

be adopted. As shown in figure 4, there are two snakes S1

with green head, and S2 with red head, and the food F is

in orange. So obviously, S2 can reach F before S1, if S1

keeps on moving towards F it does not make sense. So at

this stage the best decision for S1 is to increase the

number cells that are more close to S1 than S2. In other

words, it tries to increase the probability that it can eat the

next food, as the food are generated randomly, more cells,

that are more close to S1 than S2, means higher

12

probability. So in this situation the shortest path is not the

best solution.

Figure 4. A situation that one snake will definitely reach

the food before the other one.

b) Vicious competition: the idea is that the decision of the

snake could be not optimal for itself, as long as the

decision could make its competitor into an even worse

situation. This is based on the idea that the snake itself can

be an obstacle, so proper movement could disturb the

competitor a lot. There are 2 ways to disturb the

competitor:

 By blocking the food: it could be great if the snake can

13

let its competitor away from the food.

 By blocking the competitor: this is a more advance

way. As said in the rule, if a snake will win

automatically if its competitor die. So trying to make

your competitor die could be a good way to win the

game.

3.3. Implementation

Shortest path: using A* algorithm or Dijkstra algorithm we can

find the shortest path easily.

Safe path: the idea is that if the snake moving towards its tail it

will never die, so if there is a path between the head and the tail

it means that the snake is safe, as in the worst case it can still

chase its tail to guaranty its safety. So if a movement leads to a

situation that there is no path between head and tail, this action

is not allowed. Figure 5 & figure 6 show these two situations.

So the algorithm is:

Safe path (snake, food) {

Head = snake [0];

14

Tail = snake [length (snake) – 1];

S = shortest path (head, food);

If path (head, tail) exists {

 Decision = S;

 Safe = true;

}

Else

 For each possible moving M {

 If path (head, tail) exists {

 Decision = M;

 Safe = true;

 }

}

If doesn’t safe

 Decision = randomly decision;

Return decision;

}

Figure 5: there is a path from head to tail, then it’s safe

15

Figure 6. No path from head to tail, going to die!

Game:

1) For strategic give up, suppose AI is S1, competitor is S2,

food is F. Then the algorithm is:

Give up (S1, S2 and food)

// Give up that food

Head1 = S1 [0];

Head2 = S2 [0];

If Distance (Head1, F) + threshold > Distance (Head2, F)

 Return -1; // Do not need to give up

Else

 //Number of close cells

 N = 0;

 For each possible moving M {

 //Number of close cells for that move

16

 N_M = 0;

 For each free cell C {

 If Distance (head1, C) < Distance (head2, C)

 N_M++;

 }

 If N <= N_M {

 N = N_M;

 Decision = M;

 }

 }

 Return Decision;

2) Actually blocking food is not very useful, since most of

the time, if the snake is able to block the food, it can eat that

food directly. So the powerful one is block the competitor.

The algorithm adopts the idea used in safe path, instead of

find safe path, the AI tries to make its competitor lose safe

path. The algorithm is:

 Block competitor (S1, S2) {

 Head1 = S1 [0];

 Head2 = S2 [0];

 Tail1 = S1 [length (S1) – 1];

 Tail2 = S2 [length (S2) – 1];

 For each possible move M1 of S1

 For each possible move M2 of S2

 If path (Head2, Tail2) doesn’t exists

 Return M1;

}

17

4. POSSIBLE FURTHER WORKS

There are several possible improvements that could be

applied to this project.

1) In the game part, we suppose that the probability of each

possible movement for the competitor to take is

equivalent, but in fact, they can differ much. Therefore, if

we can predict the most possible move for the competitor,

it could help the AI a lot. While, the problem for me is

that, so far I do not have a model to calculate these

probabilities properly.

2) The user interface can be improved if I have sufficient

time. Right now, it is not very user friendly.

3) I was trying to build a deeper decision tree. (Right now,

we just consider one more step, which means the decision

tree just has 2 level) However, it make the game quite

slow to have the height of the decision tree large,

meanwhile, almost no improvement can be observe if the

height is not large enough. So, if there are some smart

ideas to prune the decision tree, so that we can deduce the

18

search space tremendously, then the AI could be

improved a lot.

4) Some patterns can be observed while playing the game,

so if we can record these patterns then it may help the AI

make decision. For example, figure 7 shows a pattern that

the snake blocks itself. This kind of patterns can be

observed frequently. (It’s very typical in the game) It

seems that the snake is going to die, while with proper

movements, the snake can save itself. So if we can record

this kind of pattern. Then in the decision tree, we don’t

need to evaluate the situation, the response time will be

much less and also proper movements can be taken.

19

Figure 7. A situation that happens often.

5. SUMMARY

This projects implements one version of snake, it designs and

implements artificial intelligence for this game so that players can

play with computer. The artificial intelligence is integrated with

greedy algorithm, graph theory, gaming theory, probability and so on.

It is very competitive, while there are still so many possible

improvement for the AI.

20

Appendix

Meeting Minutes

I. Minutes of the 1st Project Meeting

Date: 21 February, 2014

Time: 9:30am

Place: Rm. 3512

Attending: LI Zhi, Dr. David Rossiter

Absent: None

Recorder: LI Zhi

1. Approval of minutes

This is first formal group meeting, so there were no minutes

to approve.

2. Report on Progress

This is the first meeting, so there was nothing to complete.

3. Discussion Items

Things to do

 Design details of the game

 Decide technics that will be used

 Implement one-player mode.

4. Meeting adjournment and Next meeting

The meeting was adjourned at 10:00 PM.

21

II. Minutes of the 2nd Project Meeting

Date: 21 March, 2014

Time: 9:45am

Place: Rm. 3512

Attending: LI Zhi, Dr. David Rossiter

Absent: None

Recorder: LI Zhi

1. Approval of minutes

The minutes of the last meeting were approved without

amendment.

2. Report on Progress

All things discussed in last meeting are complete.

3. Discussion Items

Things to do

 Adding more features into the game

 Design and implement the basic AI algorithm

4. Meeting adjournment and Next meeting

The meeting was adjourned at 10:15 PM. The next meeting

will be held in Apr.

22

III. Minutes of the 3rd Project Meeting

Date: 22 April, 2014

Time: 2:00 am

Place: Rm. 3512

Attending: LI Zhi, Dr. David Rossiter

Absent: None

Recorder: LI Zhi

1. Approval of minutes

The minutes of the last meeting were approved without

amendment.

2. Report on Progress

All things discussed in last meeting are complete.

3. Discussion Items

Things to do

 Design and implement advance AI

 Starting final report

4. Meeting adjournment and Next meeting

The meeting was adjourned at 2:30 PM. The next meeting

will be held in May.

23

IV. Minute for the 4th Project Meeting

Date: 14 May, 2014

Time: 3:00 am

Place: Rm. 3512

Attending: LI Zhi, Dr. David Rossiter

Absent: None

Recorder: LI Zhi

1. Approval of minutes

The minutes of the last meeting were approved without

amendment.

2. Report on Progress

All things discussed in last meeting are complete.

3. Discussion Items

Things to do

 Record video for the project

 Finalize report for the project

4. Meeting adjournment and Next meeting

The meeting was adjourned at 3:30 PM.

