
CSIT 6910A Report
iBand - Musical Instrument App on Mobile Devices

Student: QIAN Li

Supervisor: Prof. David Rossiter

HKUST

Table of Contents

I. Introduction
 1
1.1 Overview
 1
1.2 Objective
 1

II. Preparation
 2
2.1 iOS SDK & Xcode IDE
 2
2.2 Wireless LAN Network Communication
 2
2.3 Sound Generation in iOS
 3

III. Design
 4
3.1 Overall
 4
3.2 Model
 5
3.3 View
 5
3.4 Controller
 6
3.5 Other Useful Things
 6

IV. Implementation
 7
4.1 Model Implementation
 7
4.2 View Implementation
 8
4.3 Controller Implementation
 10
4.4 Summary
 12

V. Conclusion
 13

VI. Appendix
 14

CSIT 6910A Independent Project
 i

I. Introduction

1.1 Overview
iOS (previously iPhone OS) is a mobile operating system developed and distributed by Apple
Inc. Originally released in 2007 for the iPhone and iPod Touch platforms, it has been
extended to support other Apple devices such as the iPad and Apple TV. Unlike Microsoft's
Windows Phone and Google's Android, Apple does not license iOS for installation on non-
Apple hardware. As of September 12, 2012, Apple's App Store contained more than
700,000 iOS applications, which have collectively been downloaded more than 40 billion
times. It had a 21% share of the smartphone mobile operating system units shipped in the
fourth quarter of 2012, behind only Google's Android. In June 2012, it accounted for 65% of
mobile web data consumption (including use on both the iPod Touch and the iPad). At the
half of 2012, there were 410 million devices activated. According to the special media event
held by Apple on September 12, 2012, 400 million devices have been sold through June
2012.

On the other hand, the needs for playing music on smart phones have been rising. It
becomes very convenient if we can use our phones to play music, anywhere, anytime.

This project develops an iOS App to let people play musical instrument right on their smart
phones. Moreover, the App makes use of Wireless LAN to let users play musical instrument
together.

1.2 Objective

The objective of this project is to develop an iOS App, which enables users to play musical
instrument together through WLAN. In order to fully realize the required function, the following
techniques are needed.

• Wireless LAN data transmission.

• Playing sound in iOS.

• Coordinate instrument input with network.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 1

I I. Preparation

2.1 iOS SDK & Xcode IDE
First of all, the iOS SDK is a must for developing iOS Application. The iOS SDK is integrated
with the Xcode, which is the official development tools developed by Apple Inc. for
developers. Xcode is Apple's powerful integrated development environment for creating great
apps for Mac, iPhone, and iPad. Xcode includes the Instruments analysis tool, iOS Simulator,
and the latest Mac OS X and iOS SDKs.

The Xcode interface seamlessly integrates code editing, UI design with Interface Builder,
testing, and debugging, all within a single window. The embedded Apple LLVM compiler
underlines coding mistakes as you type, and is even smart enough to fix the problems for you
automatically.

Xcode can be downloaded freely from Mac App Store.

2.2 Wireless LAN Network Communication

This project requires the network communication between devices in the same LAN. Under
this requirement, Bonjour is the perfect technique.

Bonjour is Apple’s implementation of a suite of zero-configuration networking protocols.
Bonjour is designed to make network configuration easier for users.

For example, Bonjour lets you connect a printer to your network without the need to assign it
a specific IP address or manually enter that address into each computer. With zero-
configuration networking, nearby computers can discover its existence and automatically
determine the printer’s IP address. And if that address is a dynamically assigned address that
changes, they can automatically discover the new address in the future.

Apps can also leverage Bonjour to automatically detect other instances of the app (or other
services) on the network. For example, two users running an iOS photo sharing app could
share photos over a Bluetooth personal area network without the need to manually configure
IP addresses on either device.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 2

With this technology, the implementation can be found in iOS in many ways. Although the
iOS SDK has already contained APIs which can be used to support Bonjour, I choose to use
DTBonjour (https://github.com/Cocoanetics/DTBonjour), a open-source library that makes
Bonjour more easy to use.

2.3 Sound Generation in iOS

There are many ways to generate sound in iOS, among which there is a very easy and
straightforward way to satisfy the requirement for this project. That is to play WAV sound file
directly. Many instrument sound can be recorded and then presented by a single WAV file,
such as piano and drum, which are the two instruments used in the project.

Comparing to play WAV sound file, sound synthesis and MIDI can be the alternatives.
However, sound synthesis of piano is extremely difficult and MIDI sound is not as realistic as
the recorded sound of a piano. If there are more instruments added to the project, those
approach may be used.

In this project, the sound of the piano are 88 single WAV files. Each of them is associated
with a note of the piano. When a certain piano key is pressed, the corresponding WAV file is
played. Similarly, there are 3 WAV files for the drum. Each of them represent a certain type of
drum. A drum machine is built based on those type of sound.

In order to play WAV file efficiently, which means the time interval between user interaction
and actual sound is heard should be near to zero, those WAV file should be loaded to a
buffer. The buffer is in the low level of iOS and the sound can be played instantly.
Consequently, an open-source library called ObjectAL (https://github.com/kstenerud/
ObjectAL-for-iPhone) is used in the project. ObjectAL is the easy Objective-C interface to
OpenAL, AVAudioPlayer, and audio session management. It can pre-load WAV file and play a
certain WAV file whenever needed very efficiently.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 3

https://github.com/Cocoanetics/DTBonjour
https://github.com/Cocoanetics/DTBonjour
https://github.com/kstenerud/ObjectAL-for-iPhone
https://github.com/kstenerud/ObjectAL-for-iPhone
https://github.com/kstenerud/ObjectAL-for-iPhone
https://github.com/kstenerud/ObjectAL-for-iPhone

I I I. Design

3.1 Overall
The design pattern used by iOS application development is Model-View-Controller. Model–
view–controller (MVC) is a software architecture pattern which separates the representation of
information from the user's interaction with it. The model consists of application data,
business rules, logic, and functions. A view can be any output representation of data, such as
a chart or a diagram. Multiple views of the same data are possible, such as a bar chart for
management and a tabular view for accountants. The controller mediates input, converting it
to commands for the model or view. The central ideas behind MVC are code reusability and
separation of concerns.

The following picture is an example that shows the interaction between Model-View-
Controller that are adopted in iOS application development.

Figure 1. MVC in iOS

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 4

3.2 Model

The model of this app are the internal structure and sound of those instruments. It should
provide public APIs such as load sound, play sound, stop playing, update instrument details,
etc. Meanwhile, in order to follow the convention of Object-Oriented Programming, every
instrument is inherited from the same super class, which provide common APIs that are used
by every instrument.

Piano
The model of the piano is relatively simple. It should be responsible for pre-loading all the
WAV files and playing a WAV file of certain key.

Drum
The model of the drum needs more consideration because the drum is a drum machine,
instead of a normal drum.

The drum machine contains three kind of sound and 16 beats in total, as default. The Public
APIs of the model should provide functions such as pre-loading sound, start/stop drum
machine, turn on/off a certain slot, which means a certain beat of a type of sound, in the
drum machine and change the tempo of the drum. More importantly, the drum machine
should behave properly. A drum sound should be played whenever the slot of that drum is
set and the slot is on the beat. There will be more details later.

3.3 View

Two types of view are apparently needed, the view of piano and the view of drum machine.

The view of piano is relatively straightforward. There should be a keyboard, showing the piano
keys. And there should be a view to select octave range, in order to change the keys that are
currently displaying. Meanwhile, the octave range size should be changeable, in order to
make the piano keys adaptable for different finger size of different users.

The view of drum machine requires a view to show the drum machine and a view to show the
current beat. For the simplicity, the view of the drum machine is just a table of size 3 by 16.
Every row represents a single type of sound, and every column in a row represents whether
the corresponding beat of that sound is turn on. Some other components such as the start/
stop button, the slider to change the tempo and the text to show the current tempo are also
needed.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 5

3.4 Controller

The job of a controller is coordinate the model with the view. It should update views for any
model changes or update models for any user interactions with the views. As a result, each
instrument needs a controller.

Piano
The controller of the piano should responsible for playing the correct audio file when the user
touches the piano keys, and update current displaying piano keys to the correct keys when
user moves the octave range to a new range.

Drum
The controller of drum should responsible for turning on/off the correct slot in the model of
the drum machine when user touches that table cell. Moreover, it should deal with starting/
stopping the drum machine when user click on the button, updating tempo value in model
when user slides the tempo slider and updating the view which indicates the current beat on
every beat of the drum machine.

3.5 Other Useful Things

As mentioned before, network communications are required throughout the project. In order
to simplify the works and follow the guideline of Object-Oriented Programming, it is a good
idea to put all the network communications into one place (that is, one class) and only
expose some useful method as the public APIs. This class is responsible for all general
purpose network communications such as sending and receiving information. I call it Network
Helper class.

On the other hand, there are different instruments so that different information exchanging
through network is needed. However, the helper class of network is for general purpose,
which means it does not understand the needs of every instrument. One easy way to solve
this problem is to create a subclass of the helper class for each instrument. This approach
imposes the restriction on extensibility of the application since a new class is created for
every newly added instrument and differences between those subclasses are small. My
approach is to create a interface between the instruments and Network Helper. The interface
is like a translator. The instrument tell the interface its needs of network communication, and
then the interface translate those needs to the helper class.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 6

IV. Implementation

4.1 Model Implementation

Preparation
Before implementing models of instruments, the Network Helper, the interface between
Network Helper and instruments model, and the library to generate sound should be
implemented and added to the project.

As introduced previously, the WLAN network communication makes use of DTBonjour. Two
classes are created as the server and client in Bonjour connection. They are the subclasses
of DTBonjourServer and DTBonjourDataConnection, and they will be used in Network
Helper.

Network Helper class
The Network Helper class, called IBNetworkHelper, has a delegate method, two public
APIs, and a property.

The delegate method is
-(void)didUpdateBonjourDeviceList;
It is implemented in the delegate of IBNetworkHelper, and will be called whenever there is a
new device in the same WLAN opens this App.

The public APIs are
- (void)startBonjour;
- (void)updateInstrument:(IBInstrumentType)instrument ! ! ! !
! ! withInfo:(NSDictionary *)dic;
They are the method to start WLAN network listening, and send update of a certain
instrument with the details in the NSDictionary, which is key/value pairs.

The properties are
@property (nonatomic, readonly, strong) NSArray *deviceList;
@property (nonatomic, weak) id <IBNetworkHelperDelegate> delegate;
The first one is the list of all available devices in the same WLAN. The second is the pointer to
the delegate of IBNetworkHelper. It should implement the delegate method.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 7

The Interface Between Network and Instrument
On the other hand, the interface, called IBNetworkInstrumentInterface, provides many
class method (begin with +) for the instruments to send update through network, such as:
+ (void)updateInstrumentWithDic:(NSDictionary *)updateDic;
+ (void)sendDrumUpdateWithDrumType:(IBDrumType)type! ! ! ! !
! ! ! atIndex:(NSUInteger)index isOn:(BOOL)isOn;
+ (void)sendDrumUpdateWithTempo:(NSUInteger)tempo;
+ (void)sendDrumUpdateWithStartOrStop:(BOOL)start;
+ (void)sendPianoUpdateWithKeyIndex:(NSUInteger)index isOn:(BOOL)isOn;

Drum
I used a similar open-source project called BBGroover (https://github.com/pwightman/
BBGroover), which is an easy-to-use scheduling/sequencing library for drum beats, and I
made my own modification.

The public APIs provide functions as follows:
- (void)turnOnDrum:(IBDrumType)type atIndex:(NSUInteger)index;
- (void)turnOffDrum:(IBDrumType)type atIndex:(NSUInteger)index;
- (void)updateTempo:(NSUInteger)tempo;

- (void)start;
- (void)stop;
- (void)resume;
- (void)pause;
The functions are just as the same as the names of those methods.

Meanwhile, the model of the drum provides some delegate methods for other classes to use,
such as:

- (void)didTick:(NSUInteger)tick;
- (void)didUpdateTempoTo:(NSUInteger)newTempo;
- (void)didUpdateModel;
Those method are optionally implemented in the delegate.

Piano
The implementation of model of piano has only one public API, which is:
- (void)playKeyAtIndex:(NSUInteger)index;
It will generate sound of the required piano key.

4.2 View Implementation

Drum
Following the previous design, two classes is needed for beats update and drum machine.

The beats view is called BBTickView, and the view of drum machine is called
BBGridView, They are extracted from BBGroover. In reality, the tick view is just a floating

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 8

https://github.com/pwightman/BBGroover
https://github.com/pwightman/BBGroover
https://github.com/pwightman/BBGroover
https://github.com/pwightman/BBGroover

little dark grey rectangle above the grid view of the drum machine. The tick will change its
place with the update of current beats. The grid view is just a table, with turned-on slot
marked dark grey.

Those two classes both have delegate and datasource to provide data that the view is
needed because in MVC design pattern, View does not contain any data. Instead, its data is
provided by Controller. The datasource of the BBGridView provides the information of
how many columns and rows, and the delegate is like the callback of user interaction. They
are as follows:

Delegate:
- (void)gridView:(BBGridView *)gridView
wasSelectedAtRow:(NSUInteger)row
! column:(NSUInteger)column;
- (BOOL)gridView:(BBGridView *)gridView
 isSelectedAtRow:(NSUInteger)row
! column:(NSUInteger)column;
Data Source:
- (NSUInteger)rowsForGridView:(BBGridView *)gridView;
- (NSUInteger)gridView:(BBGridView *)gridView
! columnsForRow:(NSUInteger)row;
Finally, the whole look of the drum is as follows:

Figure 2. The view of drum machine.

Piano
The view of the piano is complicated. Basically, there is a view to select range of octave and a
view to show the keyboard. They follows the requirement in the design stage. Details can be
found in the source code.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 9

The final view of the piano is as follows:

Figure 3. The view of piano

4.3 Controller Implementation

The Controllers of Instruments
Different controller of different type of instrument behave almost the same, except for calling
specific functions in different instruments.

Firstly, the controllers implement methods to deal with the user interaction on the device. This
is achieved by target/action mechanism and implement delegate method provided by view
classes. Basically, target/action mechanism is an easy why to deal with user interaction such
as pressing a button, and delegate method is the way to let controllers know that a user
gesture such as tap, pin, pan, etc., happens and the implementation is the handler of those
gestures. In the implementation, generally the controller will call the method provided by
models based on the parameters passed by view classes. Meanwhile, each user interaction
will trigger a network communication, if needed, in order to let all the devices in the same
WLAN have the same response.

Secondly, the controllers are responsible for changing the views if the models have updates.
Models will be updated through network communications or user interaction. The changes
will be passed to controllers by delegates too.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 10

The Other Controllers
Some other controllers are needed to fulfill the App. One is the controller to choose which
instrument to use, and the other one is to show the device list that are connected in the same
WLAN. The controller of choosing instrument is just a table to show all the instruments that
are available. After clicking one instrument, it will segue to the view/controller of that
instrument. The controller of showing band members are just list all the device names.

Figure 4. The Controller of choosing instrument

Figure 5. The Controller of showing band members

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 11

4.4 Summary

After all the implementations, the final relationship diagram is as follows:

IBNetworkHelper

IBNetworkInstrumentInterface

IBDrumViewController

IBPianoViewController

IBDrum

IBPiano

Drum View

Piano View

Send network requirements

User Interaction

Update the ViewInform the update

Call method

Update Model

Build key/value pairs and call helper method

Generate audio Present UI

Incoming network data

Figure 6. The relationship between classes

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 12

V. Conclusion

This Musical Instrument App on Mobile Devices project, which I call iBand, is an
entertaining iOS App that let users play instruments together through Wireless LAN. Currently,
it consists of two instruments, piano and drum. More instruments can be easily added using
the structure of the existing code. The sound of the instruments uses WAV audio files. The
audio files is played efficiently using ObjectAL library. All joined devices exchange their sound
information through WLAN so that they all have the same sound effect. DTBonjour is
introduced to do the WLAN network communication. Each time user presses a piano key or
turn on one slot in drum machine, the audio will be played and a message will be sent
through WLAN to other devices to tell them to play that audio.

This project requires different area of knowledge and the strong programming ability. The
whole structure of the project needs to be carefully designed since there are two major part,
network and audio, to coordinate well with each other. Meanwhile, the implementation of
instruments makes use of the advantage of Object-Oriented Programming so that it provides
good extensibility.

The final result of this project achieves the goals and meets the requirements in the design
stage with satisfaction. The App is used in all my devices perfectly.

Source Code
The source code of this project can be found at https://github.com/powerqian/iBand.

Demo Video
YouTube: http://youtu.be/rmv9mLy9mq4

Youku: http://v.youku.com/v_show/id_XNTU3NjgyMjYw.html

Tudou: http://www.tudou.com/programs/view/sITKw3t4fPY/

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 13

https://github.com/powerqian/iBand
https://github.com/powerqian/iBand
http://youtu.be/rmv9mLy9mq4
http://youtu.be/rmv9mLy9mq4
http://v.youku.com/v_show/id_XNTU3NjgyMjYw.html
http://v.youku.com/v_show/id_XNTU3NjgyMjYw.html
http://www.tudou.com/programs/view/sITKw3t4fPY/
http://www.tudou.com/programs/view/sITKw3t4fPY/

VI. Appendix

Minutes of the 1st Project Meeting
Date: Thursday, 7 March 2013

Time: 11:30 AM

Place: Room 3512

Attending: Prof. Rossiter, QIAN Li

Absent: None

Recorder: QIAN Li

Approval of minutes
This is first formal group meeting, so there were no minutes to approve.

Report on Progress
QIAN Li demonstrated his idea on this project and showed a piano App.

Discussion Items and Things To Do
• Scope of the project

• Predesign for the project

• Support Wireless LAN network communication.

Meeting adjournment
The meeting was adjourned at 12:00 PM.

Minutes of the 2nd Project Meeting
Date: Wednesday, 27 March 2013

Time: 11:45 AM

Place: Room 3512

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 14

Attending: Prof. Rossiter, QIAN Li

Absent: None

Recorder: QIAN Li

Approval of minutes
The minutes of the last meeting were approved without amendment.

Report on Progress
QIAN Li made the demo of playing piano on one device and the piano is also played on the
other device, which means the Wireless LAN network communication works.

Discussion Items and Things To Do
• Improvements on piano and adding other sound of instrument.

Meeting adjournment
The meeting was adjourned at 12:15 PM.

Minutes of the 3rd Project Meeting
Date: Monday, 15 April 2013

Time: 12:00 PM

Place: Room 3512

Attending: Prof. Rossiter, QIAN Li

Absent: None

Recorder: QIAN Li

Approval of minutes
The minutes of the last meeting were approved without amendment.

Report on Progress
QIAN Li demonstrated the drum machine.

Discussion Items and Things To Do
• Making the drum machine work with Wireless LAN network.

Meeting adjournment
The meeting was adjourned at 12:30 PM.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 15

Minutes of the 4th Project Meeting
Date: Thursday, 16 May 2013

Time: 12:00 PM

Place: Room 3512

Attending: Prof. Rossiter, QIAN Li

Absent: None

Recorder: QIAN Li

Approval of minutes
The minutes of the last meeting were approved without amendment.

Report on Progress
QIAN Li demonstrated the final result of the project, which meet all the requirements.

Discussion Items and Things To Do
• Finish the report

• Record a demonstration video

Meeting adjournment
The meeting was adjourned at 12:30 PM.

iBand - Musical Instrument App on Mobile Devices	 QIAN Li

CSIT 6910A Independent Project, 2013 Spring
 16

