

RO1

Personalized Algotrading Using Deep **Learning & Machine Learning models**

> BY MUN Sun Bin KWOK Ue Nam KONG Kin Cheung HO Yat Man Peter

Table of Content

O1 Introduction

Deep Learning and Algo trading

Implementation
Implementation of the strategy

Evaluation

How well our platform performed

O7 Discussion
Challenges faced and future work

Objectives
Goals that we aim to achieve

Testing

Testing our strategy and platform

Web Application
Portfolio Presentation

Conclusion
Achievement summary

Algorithmic Trading using Deep Learning

Niche our team captured

Current niche : Overflowing trading platforms & confused users

Current mobile platforms for algo trading

Machine Learning and Deep Learning models

Machine Learning and Deep Learning models

Machine Learning (ML) is a study of constructing a model operating under complex algorithms which will improve over the iterative learning process without programmed instructions.

Machine Learning and Deep Learning models - further adaptations

Further implementations including:

- Mix of the existing models
- Using advanced structures for non-numerical data (BERT for sentiment analysis)

02 Objectives What we want to achieve

Ultimate Goals

Truly automated Platform

Not requiring users to make any judgements or choices during investing

Higher Prediction Accuracy

Using multiple machine learning models for prediction

Objectives

Database Implementation

Risk Quantification

Machine Learning Models Training

Portfolio Presentation

Database Implementation

- Historical Stock Market Data
 - Training and testing
 - Backup purpose
- Real-time Stock Market Data
 - Keep our database updated
- User Survey Responses
 - Risk Level
- User Portfolio
 - Capital
 - Performances

Machine Learning Models Training

- 1. Train multiple machine learning models
- 2. Combine the result to make prediction on stock price or trend
 - a. Average weighting
 - b. Higher weighting on models with better performance
- 3. Construct a strategy based on the model prediction results

Risk Quantification

A survey to understand users' financial situations and investment preferences

Assign a risk-bearing level to a user based on the response from the survey

Choose the suitable sectors and stocks for the user to invest in

Choose the suitable models used for price and trend prediction

Portfolio Presentation

Develop a web dashboard application to display the users' portfolio What should be displayed:

- User Information
- Portfolio Distribution
- Portfolio Performance
- Baseline Performance for comparison (Buy & Hold Strategy)

How we implemented the strategy

3-1. Risk Quantification

A. Risk Quantification

User Survey
Make users input their
data on risk level

Quantification

Convert the user input to numeric data

1,000

Dummy users to test the module

A. Risk Quantification

Demographic Age, source of

deposit, seed money

Risk How much risk the

user is willing to take

Time

Time period of the investment

CategoryCategory / Sector users are interested in

A. Risk Quantification

→ General Enquiry				
r 1. What is your age range?				
Show code				
1. What is your age range? age 55				
#@title Default title text Default title text age = input_result.children[0].value				
2. What is the portion of investment among your entire				
asset/securities/mortgage/loan?				
Show code				
What is the portion of investment among your entire asset/securities/mortgage portion 50				
portion = input_result.children[0].value				
▼ 3. How much is your source of income?				
Show code				
3. How much is your source of income? Choose one: 0-10k				
income_total = dropdown.value				

,	Risk Bearing Level
	1. For the certain amount of investment you make, how much
•	gain/loss are you expecting/comfortable with? (bar scroll) - max drawdown
	Show code
	1. For the certain amount of investment you make, how much gain/loss are you 0.5%
	Show code
	2. What is the reason you started investing?
	Show code
	What is the reason you started investing? Reason: 1. Slock as a part of portfolio
	why = x.value
•	3. What is the minimum timeframe that you are willing to invest?
	Show code
	3. What is the minimum timeframe that you are willing to invest? Term: Very short (1 month) Short Term (within Regular (Bronth-1 Quite Long (1-5))
	term = x.value
	4. In a scale of 1~10, what is your acceptance in taking the risk for
	your investment?

```
In a scale of 1-10, what is your acceptance in taking the risk for your inves-
          bearing 5
 bearing = input_result.children[0].value
▼ 5. MCQ : Leverage, Individual Stocks, ETF,Fund
    Show code
     5. MCQ : Leverage, Individual Stocks, ETF, Fund
           Types Leverage
               Individual Stocks
 types = list(x.value)
• 6. How much profit are you expecting from your investment?
    Show code
      6. How much profit are you expecting from your investment?
                                                                      40-80%
 profit exp = x.value
- Applicative Questions
▼ 1. How would you rate yourself as an investor? 1-10 scale
    Show code
     1. How would you rate yourself as an investor? 1-10 scale
```


3-2. Model Selection

B. Model Selection - selected

SVCRBF kernel to perform classification

SVRSupervised learning to predict discrete values

DNN + TWAPTime Weighted
Average Price

sequence prediction problems with spatial inputs

XGBoost
Extended Gradient
Boosting Framework

CatBoost
Concat weak boosting
models

B. Model Selection - selected

CatBoost

Used XGBRegressor library learning_rate=0.01 n_estimators=1000

Added TWAP as input for Simple DNN for decision making

```
#Performance evaluation
print('CATBoost PERFORMANCE')
print('r2 score: '+str(r2_score(new_test_y, pred_cat)))
print('RMSE: '+str(np.sqrt(mean_squared_error(new_test_y, pred_cat))))
print("Mean Absolute Error: " + str(mean_absolute_error(new_test_y,pred_cat))))
CATBoost PERFORMANCE
r2 score: 0.5254815306534676
RMSE: 1.5517341798515667
Mean Absolute Error: 1.0839976510013503
```

```
#Performance evaluation
print('XGBoost PERFORMANCE')
print('r2 score: '+str(r2_score(new_test_y, xgb_pred_y)))
print('RMSE : '+str(np.sqrt(mean_squared_error(new_test_y, xgb_pred_y))))
print("Mean Absolute Error : " + str(mean_absolute_error(new_test_y, xgb_pred_y)))
XGBoost PERFORMANCE
r2 score: 0.39090347765863553
RMSE : 1.7580605387765824
Mean Absolute Error : 1.1670200978605854
```

```
#Performance evaluation
print('TWAP PERFORMANCE')
print('r2 score: '+str(r2_score(new_test_y, pred_y)))
print('RMSE : '+str(np.sqrt(mean_squared_error(new_test_y, pred_y))))
print("Mean Absolute Error : " + str(mean_absolute_error(new_test_y,pred_y)))

TWAP PERFORMANCE
r2 score: 0.5584552566318358
RMSE : 1.4968494612872458
Mean Absolute Error : 0.94321567199208
```

B. Model Selection - selected

SVC Prediction (decision)
learning_rate=0.01
n_estimators=1000

SVR Prediction (Regressor) Selected After grid-search

Used both regression and classification tasks

```
svc_prediction = svc.predict(new_test_X_5)
svc_confidence = svc.score(new_test_X_5, new_action_test_y)
print("svc confidence:", svc_confidence)
svc_confidence: 0.875751503006012
```

```
svr = SVR(kernel=kernel, C=c, gamma=gamma)
svr.fit(new_train_X_5, new_train_y)
svr_prediction = svr.predict(new_test_X_5)
svr_confidence = svr.score(new_test_X_5, new_test_y)
print("svr confidence:", svr_confidence)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/
y = column_or_ld(y, warn=True)
svr confidence: 0.4010474438506175
```


B. Model Selection - dropped

ARIMA/GARCH
Time Series model for prediction

FB Prophet
Advanced time series
model that also
removes seasonality

B. Model Selection - dropped

ARIMA Criteria

Exists evident seasonality

ACF,PACF graph : appropriateness

AIC : Lowest BIC : Lowest

FB Prophet

Poor r2 score, rejected from the output


```
#Performance evaluation
print('FB Prophet PERFORMANCE')
print('r2 score: '+str(r2_score(new_test_y, fb_pred_y)))
print('RMSE : '+str(np.sqrt(mean_squared_error(new_test_y, fb_pred_y))))
print("Mean Absolute Error : " + str(mean_absolute_error(new_test_y,fb_pred_y)))
FB Prophet PERFORMANCE
r2 score: 0.19141116494509347
```

C. Model Volatility assignment

C. Model Volatility assignment

	Stock					
Model	FB	AMZN	NFLX	IBM	LMT	PVH
CNN LSTM (Regression)	Medium	Medium	High	Low	Low	Medium
CNN LSTM (Classification)	Medium	High	High	Medium	Medium	High
TWAP	High	High	High	Medium	Medium	High
SVR	Medium	Medium	High	Medium	Medium	High
SVC	High	Medium	High	Low	Medium	High
XGBoost	Medium	Low	Low	Low	Low	Low
CatBoost	Medium	Low	Low	Low	Low	Low

04 Testing

How we tested the our strategy and platform

A. Backtesting on Prediction Model

- Developed a python class for backtesting procedure
- Input:
 - 1) Historical Price Data
 - 2) Prediction Action
- Output:
 - 1) Overall Profit with prediction
 - 2) Profit with Buy-and-Hold Strategy
 - 3) CAGR

```
class backtest:
    hpd =
    pred action=pd.DataFrame()
    trade_record=pd.DataFrame(index=[],
                              columns=["Action", "Price", "Position", "Cash", "Pos_Bal", "Cash_Bal", "Cum_Profit", "Total_Bal"],
    capital = 0
    cash balance = 0
    profit = 0
    handle fee = 0
    position = 0
    last price = 0
    do_nth_profit = 0
   num year = 0
    tested = False
    _stock_trough = 0
    stock peak = 0
    stock all time low = 0
    stock all time high = 0
    portfolio trough = 0
    portfolio peak = 0
    portfolio all time low = 0
    portfolio all time high = 0
    def __init__(self,hist_price_data,pred_action,capital,handling_fee,num_year=1):
       self.hpd = hist_price_data
        self.pred action = pred action
       self.capital = capital
        self.cash_balance = capital
       self. portfolio trough = capital
        self. portfolio peak = capital
        self._portfolio_all_time_low = capital
        self. portfolio all time high = capital
        self.handle fee = handling fee
        self.num_year = num_year
    def clear_trade_record(self,sec):
       self.trade_record=pd.DataFrame(index=[],
                                       columns=["Action", "Price", "Position", "Cash", "Pos Bal", "Cash Bal", "Cum Profit", "Total Bal"],
```

A. Backtesting on Prediction Mod

- Backtesting Setting
- Each period: 1 year long
- Number of period: 7 (2012-2018)
- Capital: \$10,000
- Stock List (See Figure)

BlockChain	COIN, NVDA, FB
Airline	BA, GD, LMT
Tr aveling	UBER, ABNB, MAR, BKNG
Semiconductors	INTC, NVDA, QCOM, MU, AMD
Cloud Computing	IBM. AMZN, GOOG, CRM
Social Media	TWTR. SNAP. PINS. FB
Entertainment	DIS, NFLX, FB
Retail	WMT, COST, TGT, BBY, HD
Franchise	MCD, YUM, SBUX, DPZ
Real Estate	HST, EQR, AVB, PLD, SPG
Telecommunication	T, TMUS, VZ, CMCSA, CHTR
Energy & Resources	DOW, DD
Luxury goods	RACE, EL, PVH

- B. Backtesting on User Portfolio
- For example, 8 models X 20 stocks
 ⇒ 160 pairs
- Each pairs will have 7 CAGR result (from year 2012-2018)
- Calculate the SD of the 7 CAGR
 ⇒ Volatility
- Sort all the pairs by volatility descendingly

Stock	Model	Volatility
AMD	TWAP	153.0592847
AMD	[5]SVR	115.5840271
AMD	CAT	107.8030016
AMD	CNN_LSTM_CLASS	106.6059767
NFLX	CAT	102.7248703
AMD	CNN_LSTM_REG	96.31024623
NFLX	CNN_LSTM_CLASS	88.87736372

B. Backtesting on User Portfolio

Classify into three risk levels
 ⇒ Low : Medium : High

Approximately in a ratio of 1:2:1

	Sector	Stock	Model	Volatility	risk_level
300	Semiconductors	AMD	TWAP	153.059285	high
75	Semiconductors	AMD	[5]SVR	115.584027	high
210	Semiconductors	AMD	CAT	107.803002	high
120	Semiconductors	AMD	CNN_LSTM_CLASS	106.605977	high
192	Entertainment	NFLX	CAT	102.724870	high
136	Airline	GD	CNN_LSTM_REG	5.337012	low
144	Energy & Resources	DD	CNN_LSTM_REG	4.644089	low
175	Telecommunication	Т	CNN_LSTM_REG	4.365728	low
159	Real Estate	SPG	CNN_LSTM_REG	3.556537	low
171	Social Media	SNAP	CNN_LSTM_REG	0.947523	low

B. Backtesting on User Portfolio

- Each user has a user preference
- 1. Risk Level
- 2. Area of Interest
- Example: User 13

	stock_type	risk_level
9	['Telecommunication', 'Franchise', 'Airline', 'Energy & Resources', 'Cloud Com	low
10	['Retail', 'Luxury goods']	medium
11	['Retail', 'Entertainment', 'Traveling', 'Franchise', 'Telecommunication', 'Real E	low
12	['Social Media', 'Energy & Resources', 'Semiconductors', 'Traveling', 'Franchis	medium
13	['Airline', 'Luxury goods', 'Franchise', 'Telecommunication']	low
14	['BlockChain', 'Semiconductors', 'Social Media', 'Entertainment', 'Airline', 'Ret	medium

B. Backtesting on User Portfolio

- We assume each user will invest into 3 stocks, \$10000 each
- Select the top 3 (model,stock) pairs for each user
- On the right, we use 2012-2018 as to measure the (model, stock) pairs volatility
- Then we perform backtesting on the selected (model, stock) pairs with 2019-2021 data

4. Testing

B. Backtesting on User Portfolio

Example: User 13 [(TWAP, T) + (CNN_LSTM_REG, EL) + (CAT, T)]

	Model_1	Stock_1	Value_1	Model_2	Stock_2	Value_2	Model_3	Stock_3	Value_3	Total_Value
20191209	TWAP	Т	10919.766	CNN_LSTM_REG	EL	17376.683	CAT	Т	14004.82	42301.269
20191210	TWAP	Т	10905.026	CNN_LSTM_REG	EL	17323.003	CAT	Т	13978.921	42206.950000000000
20191211	TWAP	Т	10956.281	CNN_LSTM_REG	EL	17358.203	CAT	Т	13971.942	42286.42600000000
20191212	TWAP	Т	10958.961	CNN_LSTM_REG	EL	17361.723	CAT	Т	13975.366	42296.05
20191213	TWAP	Т	11005.191	CNN_LSTM_REG	EL	17564.218	CAT	Т	14034.43	42603.839
20191216	TWAP	Т	11071.186	CNN_LSTM_REG	EL	17564.218	CAT	Т	14118.746	42754.15
20191217	TWAP	Т	11071.186	CNN_LSTM_REG	EL	17555.449	CAT	Т	14118.746	42745.381
20191218	TWAP	Т	11125.456	CNN_LSTM_REG	EL	17605.61	CAT	Т	14188.082	42919.148
20191219	TWAP	Т	11245.721	CNN_LSTM_REG	EL	17596.845	CAT	Т	14341.734	43184.3
20191220	TWAP	Т	11256.776	CNN_LSTM_REG	EL	17586.405	CAT	Т	14355.858	43199.039
20191223	TWAP	Т	11214.231	CNN_LSTM_REG	EL	17832.615	CAT	Т	14301.502	43348.348
20191224	TWAP	Т	11183.076	CNN_LSTM_REG	EL	17696.025	CAT	Т	14254.575	43133.67600000000
20191226	TWAP	Т	11254.096	CNN_LSTM_REG	EL	17706.465	CAT	Т	14247.456	43208.017
20191227	TWAP	Т	11262.806	CNN_LSTM_REG	EL	17845.665	CAT	Т	14258.506	43366.977
20191230	TWAP	Т	11182.857	CNN_LSTM_REG	EL	17872.635	CAT	Т	14157.079	43212.571000000000

4. Testing

B. Backtesting on User Portfolio

Example: User 13 [(TWAP, T) + (CNN_LSTM_REG, EL) + (CAT, T)]

	Total_Value	Total_Cum_Profit	Buy&Hold_Total	Capital_Bal
20131211	42200.4200000000	12200.420	41141.221920	30000
20191212	42296.05	12296.05	41150.683926000000	30000
20191213	42603.839	12603.839	41447.179926000000	30000
20191216	42754.15	12754.1500000000000	41893.363926000000	30000
20191217	42745.381	12745.381000000000	41718.643926000000	30000
20191218	42919.148	12919.148	41899.207926	30000
20191219	43184.3	13184.300000000000	42301.31592600000	30000
20191220	43199.039	13199.039	42318.09192600000	30000
20191223	43348.348	13348.348	42438.247926000000	30000
20191224	43133.67600000000	13133.676	42242.131926	30000
20191226	43208.017	13208.017	42419.395926000000	30000
20191227	43366.977	13366.977000000000	42564.787926000000	30000
20191230	43212.571000000000	13212.571	42391.97380200000	30000

How well our platform performed

A. Platform Performance Result (By year)

- Overall Performance (By year)
- Take average over 1000 users

Year	Platform Performance	Buy and Hold CAGR	With Platform CAGR
2019	9.24%	30.50%	39.74%
2020	43.81	17.15%	60.95%
2021	25.53%	18.16%	42.68%

Average of Platform Performance,
Platform CAGR and "Buy and Hold" CAGR in different years

A. Platform Performance Result (By year)

- Consider the maximum and minimum result
- When Buy-and-Hold is doing very bad, our platform will lose less
- When Buy-and-Hold is doing very good, our platform will do it much better

Voor	Buy and Hold	With Platform
Year	CAGR	CAGR
2019	-20.04%	-20.84%
2020	-31.80%	-16.05%
2021	-12.59%	0.2%

Year	Buy and Hold	With Platform	
Teal	CAGR	CAGR	
2019	119.50%	124.75%	
2020	98.76%	137.33%	
2021	90.55%	116.08%	

Minimum of Platform CAGR, "Buy and Hold" CAGR, and Platform Performance

Maximum of Platform CAGR, "Buy and Hold" CAGR, and Platform Performance

A. Platform Performance Result (By year)

 For how many users we can help to beat the "Buy-and-Hold" strategy

Year	Outperformance
2019	80%
2020	91%
2021	89%

Percentage of users obtaining positive platform performance

A. Platform Performance Result (By year)

• Our platform when the market is being hit severely do much better

# of Users that have Year Positive CAGR in "Buy and Hold" Strategy		# of Users that have Positive CAGR in our Platform	Difference
2019	981	991	+10
2020	553	981	+428
2021	956	993	+37

The number of users obtaining positive CAGR in two strategies

A. Platform Performance Result (By year)

 Our platform can help most of the users that are getting negative CAGR in Buy-and-Hold to obtain positive return.

Year	# of Users that have negative CAGR in "Buy and Hold" Strategy	# of Users that have (Negative CAGR in "Buy and Hold" Strategy <u>AND</u> Positive CAGR in our Platform)	%
2019	12	11	91.7%
2020	440	430	97.7%
2021	37	37	100%

Percentage of users with positive CAGR with our platform **given that** they have negative CAGR in the "Buy and Hold" strategy

B. Platform Performance Result (By risk)

- Good in the "Low" level
- Much better in the other two levels

Risk Level	# of Users	# of Users with Positive Platform Performance	%
High	148	125	84.5%
Medium	706	676	95.8%
Low	139	87	62.5%

Percentage of User Portfolio with Positive Platform Performance

06 Web Application

Portfolio Presentation

Web Application Architecture

Front-end

Showing essential information and interacting with users

Backend

Handling the requests from front-end and retrieving data from the database

Database

Storing the user information and portfolio performance

LIVE DEMO

Web Application Testing and Evaluation

Web Application Testing

Asked 8 voluntary testers to experience our web application and gathered their responses by Google forms

Result

Evaluation Metrics	Average Rating
User-friendliness	3.9 / 5.0
Informative	4.1 / 5.0
UI design	4.6 / 5.0
Interactiveness	3.8 / 5.0

07Discussions

Challenges faced and future work

7. Discussion

A. Challenges

Risk metric

Solely depending on the average value of CAGR volatility

Market Data Collection

- Failed to find a free-of-charge
 API for real time market data
- Update manually

Model Selection

Test if Deeper models can enhance performance

Risk Quantification

Various risk analysis required

7. Discussion

B. Further work

Try More Ensemble Model

To capture more information from the market data

Backtest with other periods

Try on the period with different length and data range

Sector-wise Model Training

Some models may behave better on some sectors

08 Conclusion

Achievement

8. Conclusion

A. Achievements

- A. Final model list:
 - i. SVM(Support Vector Machine) classifier and regressor
 - ii. Gradient Boost models XGBoost / CatBoost
 - iii. Simple DNN (Deep Neural Network) in association with TWAP
 - iv. Combined Deep Learning algorithms like CNN-LSTM (Convolution Neural Network with Long Short Term Memory) classifier and regressor
- B. Experimented model:
 - i. Random Forest / Decision Tree
 - ii. Time series models (ARIMA, ARCH, GARCH model, Facebook Prophet library)
 - iii. Simple MLP model

8. Conclusion

A. Achievements

C. Model training, testing, and evaluation using the customized backtesting class module to simulate the trading process and calculate the CAGR and MDD

D. Matched three (stock, model) pairs for 1,000 dummy users and calculated their portfolios' profit and loss

E. Built a user-friendly web dashboard application to interact with the user and visualize the portfolio by charts and graphs

8. Conclusion

A. Achievements

4.1/5

25.85%

90%

UI/UX score

Average additional gain by our platform between 2019~2021

Average % of users obtaining positive platform performance

Thanks

Do you have any questions?