
GPU
Acceleration for
Data Processing
and Analytics

Qiong Luo
The Hong Kong University of
Science and Technology
and
The Hong Kong University of
Science and Technology
(Guangzhou)

Data Processing and Analytics (DPA)

• Workload characteristics
• Computation-intensive or data-intensive
• Relatively simple or complex control flow
• In-memory or involving multiple passes of disk IO
• Long running time and/or large memory consumption

• An effective approach to performance improvement
• Hardware acceleration

• This talk’s focus
• Accelerating a few DPA tasks with the GPU (Graphics Processing Unit)

2

Graphics Processing Units (GPUs) on the Market

https://www.precedenceresearch.com/graphic-processing-unit-market

•Intel
•IBM
•Samsung
•NVIDIA
•Siemens AG
•AMD
•Qualcomm
•Google
•Dassault Systems
•Sony

•Computer
•Gaming Console
•Smartphone
•Tablet
•Television
•Others

•Integrated
•Dedicated
•Hybrid

•IT & Teleco
•Electronics
•Media & Entertainment
•Defense & Intelligence
•Others

3

NVIDIA GPUs for General-Purpose Computing

4

NVIDIA GPU Architectures
•Ada Lovelace Architecture (Sep 2022)
•Hopper Architecture (March 2022)
•Ampere Architecture (2020)
•Turing Architecture (2018)
•Volta Architecture (2017)
•Pascal Architecture (2016)
•Maxwell Architecture (2014)
•Kepler Architecture (2012)
•Fermi Architecture (2010)
•Tesla Architecture (2006)
•Curie Architecture 2004)
•Rankine (2003)
•Kelvin (2001)
•Celsius (1999)

Language Solutions
• CUDA Toolkit
• NVIDIA HPC SDK
• OpenACC directives
• PyCUDA
• Altimesh Hybridizer
• OpenCL
• AleaGPU for F#.

Tools & Ecosystem
• GPU-Accelerated Libraries
• Performance Analysis Tools
• Debugging Solutions
• Data Center Tools
• Accelerated Web Services
• Cluster Management

GPU-Accelerated Libraries
• Math Libraries
 cuBLAS, cuFFT, cuSparse,...
• Image and Video Libraries
 nvJPEG, codec, optical flow...
• Deep Learning
 cuDNN, DALI, TensorRT,...
• Parallel Algorithms
 Prefix sum, sort, reduce,...
• Communication Libraries
 NVSHMEM for GPU memory
 NCCL for multi-GPU/-node
• Partner Libraries
 OpenCV for computer vision
 Gunrock for graph processing
 CVVILib for medical imaging

https://developer.nvidia.com/tools-ecosystem

NVDIA GPU Performance Trends

5https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/

GPU Architecture in Comparison with CPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-

background/index.html
6

An NVIDIA A100 GPU
- 108 SM (Streaming

Multiprocessor),
- a 40 MB L2 cache, and
- up to 2039 GB/s bandwidth

from 80 GB of HBM2 memory

Multi-GPU Computers and GPU Clusters

7

https://www.researchgate.net/figure/rCUDA-cluster-configurations_fig7_280883404
https://www.gigabyte.com/us/Enter
prise/GPU-Server/G481-HA0-rev-200

GPUs are computational devices; they require CPUs to be the host!

CUDA Programming
Model

• A CUDA program consists of Host (CPU) and Device (GPU)
components.

• The CPU:
• Allocate and deallocate GPU memory
• Transfer data between the CPU and the GPU
• Launch GPU programs (kernels)

• The GPU:
• Execute a kernel program with massive GPU threads

• CPU and GPU execution in parallel; explicit synchronization or
through memory transfer (synchronized by default)

8

CUDA Threads
• A kernel program is executed by a thread grid specified

by the user.
• A grid consists of 10s-1000s thread blocks.
• A thread block contains 10s-1000s threads. Grids and

blocks can be 1 to 3 dimensions.
• Each thread block runs in a single SM.
• Number of threads in a block should be set to a

multiple of 32, the current warp size.
• A warp is the scheduling unit in the GPU, 32 threads

with consecutive IDs.

9

CUDA Memory Hierarchy
• Global memory

• Tens of gigabytes
• High bandwidth high latency
• Host-allocated GPU variables
• Shared by all threads in the grid

• Shared memory
• Tens of kilobytes
• Residing in each streaming multiprocessor
• Low access latency
• Variables declared as “shared”
• Shared by threads within a thread block

• Registers
• Lowest latency
• Local variables in GPU kernel programs
• Private to each individual thread

10

Accelerating DPA Tasks on CUDA

• Identify parallelisms
• On GPU and CPU; between CPU and GPU; between processor, memory, IO.

• Design suitable data structures and algorithms
• Various arrays for concurrent access; lock-free algorithms

• Maximize GPU occupancy
• Increase number of threads
• Reduce warp divergence

• Coalesced memory access for bandwidth
• Shared memory for latency

11

Our Recent Work as Examples
• cuGridder:

Efficient Radio
Interferometric
Imaging on the
GPU

12

• EGSM: Efficient GPU-
Accelerated Subgraph
Matching

• RapidGKC:
GPU-accelerated
K-mer Counting

CB

A

A

𝑢𝑢3𝑢𝑢2
𝑢𝑢0

𝑢𝑢1
D

C D C C

B B B

A A A𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

𝑣𝑣5 𝑣𝑣6 𝑣𝑣7

𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

A 𝑣𝑣0 A𝑣𝑣4

Query graph 𝑄𝑄

Data graph 𝐺𝐺

Efficient Radio Interferometric
Imaging on the GPU
eScience’22

Honghao Liu1, Qiong Luo1,2, and Feng Wang3

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)
3Guangzhou University

13

Radio Interferometric Imaging

• Radio Interferometer: an array of radio antennas receiving the radio signals
• Visibility and Sky Brightness

• V(u,v,w) – a complex function containing the information from a baseline
• I(l,m) – the intensity of the source in the sky

• Imaging uses Fourier Transform to obtain I(l,m) from V(u,v,w)

Figure 1: Very Large Array[8] Figure 2: Visibility and Sky Brightness

𝑉𝑉 𝑢𝑢, 𝑣𝑣,𝑤𝑤 = ��
𝐼𝐼(𝑙𝑙,𝑚𝑚)
𝑛𝑛

𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑢𝑢𝑢𝑢+𝑣𝑣𝑣𝑣+𝑤𝑤(𝑛𝑛−1))

14

State of the Art

• Previous work[1,2,3] proposed CPU-based accurate imaging algorithms
• W-gridder[4] paralellized the most accurate imaging algorithm[5] on the CPU
• FINUFFT[6] and cuFINUFFT[7]: the fastest Non-uniform Fourier Transform

(NUFFT) on the CPU and the GPU respectively

Figure 3: 3D NUFFT workflow

Figure 4: Gridding workflow 15

Our Work

• Propose cuGridder, a GPU-based CUDA C library for radio
interferometric imaging

• Implement kernel programs for each step and optimize the memory
access pattern on the GPU

• Achieve high performance
• 5-10x faster than cuFINUFFT for the convolution
• 3-5x faster than FINUFFT and cuFINUFFT for the NUFFT
• 2-3x faster than the w-gridder for the entire gridding workflow

• Provide a python interface for astronomers to use the library

16

Workflow of cuGridder
• Initialization

• Allocate host and device memory
• Load data from the disk

• Preprocessing – convert matrices to 1D arrays
• Coordinates transform – shift and scale (u,v,w) to

[-𝜋𝜋,𝜋𝜋)
• Convolution

• Histogram, prefix sum and gather parallel primitives
partition data based on (u,v,w)

• Convolution primitive works on partitioned data
• 2D FFT – computed by the NVIDIA cuFFT library
• 1D DFT – transform along the 𝑤𝑤 dimension
• Correction – remove the effect of the mask

function from the convolution Figure 5: the gridding workflow of cuGridder

17

Convolution on the GPU

• Each thread corresponds to an
output point b

• Partitioning
• Histogram counts number of points in

each bin
• Prefix sum adds number of points of

preceding bins
• Scatter to location = in-bin index +

prefix sum[Bin index]

Figure 6: 1D example of mask function and partition

𝑓𝑓 ∘ 𝜙𝜙 = �𝜙𝜙 𝑢𝑢 − 𝑏𝑏𝑘𝑘 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑢𝑢

18

Mask Function Evaluation on the GPU

• The mask function evaluation is one of the
heaviest computational tasks

• Taylor Series Approximation
• Divide [0,1) into 𝑀𝑀 equal segments,
• For 𝑥𝑥 in 𝑘𝑘th segment, 𝜙𝜙(𝑥𝑥) is evaluated by

• Save the coefficients into a lookup table, and load
them into GPU shared memory for evaluation

𝜙𝜙 𝑥𝑥 = 𝜙𝜙 𝑥𝑥𝑘𝑘 + 𝜙𝜙′ 𝑥𝑥𝑘𝑘 𝑥𝑥 − 𝑥𝑥𝑘𝑘 + ⋯+
𝜙𝜙 𝑛𝑛 𝑥𝑥𝑘𝑘

𝑛𝑛!
(𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑛𝑛

𝑅𝑅𝑛𝑛 𝑥𝑥 = 𝜊𝜊((𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑛𝑛)

0 1𝑥𝑥1 𝑥𝑥3𝑥𝑥2 𝑥𝑥4 𝑥𝑥𝑘𝑘

Figure 7: mask function

19

Summary on cuGridder

• Problem characteristics
• Computation intensive
• In-memory processing
• Simple control flows and regular data access patterns

• Our method
• Entire computation on the GPU after preprocessing
• Massive thread parallelism to utilize the GPU
• Data-parallel primitives to utilize memory bandwidth
• Coefficient lookup table in the shared memory to reduce latency

Source code available at https://github.com/RapidsAtHKUST/cuGridder

20

https://github.com/RapidsAtHKUST/cuGridder

Efficient GPU-Accelerated
Subgraph Matching
SIGMOD’23

Xibo Sun1, Qiong Luo1,2

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)

21

Subgraph Matching

• Given vertex-labeled, undirected graphs 𝑄𝑄 (query graph) and 𝐺𝐺 (data
graph), find all subgraphs in 𝐺𝐺 that are isomorphic to 𝑄𝑄.

• NP-hard problem.

22

Subgraph Matching Example

• A, B, C, and D are vertex labels
• 𝑢𝑢𝜋𝜋, 𝑣𝑣𝑗𝑗 are vertices
• Two matches

• {(𝒖𝒖𝟎𝟎,𝒗𝒗𝟎𝟎), (𝒖𝒖𝟏𝟏,𝒗𝒗𝟏𝟏), (𝒖𝒖𝟐𝟐,𝒗𝒗𝟓𝟓), (𝒖𝒖𝟑𝟑,𝒗𝒗𝟖𝟖), (𝒖𝒖𝟒𝟒,𝒗𝒗𝟗𝟗)}, and
• {(𝑢𝑢0,𝑣𝑣1), (𝑢𝑢1,𝑣𝑣0), (𝑢𝑢2,𝑣𝑣5), (𝑢𝑢3,𝑣𝑣8), (𝑢𝑢4,𝑣𝑣9)}

CB

A

A

𝑢𝑢3𝑢𝑢2
𝑢𝑢0

𝑢𝑢1
D
𝑢𝑢4

C D C C

B B B

A A A𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

𝑣𝑣5 𝑣𝑣6 𝑣𝑣7

𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

A 𝑣𝑣0 A 𝑣𝑣4

Query graph 𝑄𝑄 Data graph 𝐺𝐺
23

Subgraph Matching Example (Continued)

• A, B, C, and D are labels
• 𝑢𝑢𝑥𝑥, 𝑣𝑣𝑥𝑥 are vertices
• Two matches

• {(𝑢𝑢0,𝑣𝑣0), (𝑢𝑢1,𝑣𝑣1), (𝑢𝑢2,𝑣𝑣5), (𝑢𝑢3,𝑣𝑣8), (𝑢𝑢4,𝑣𝑣9)}, and
• {(𝒖𝒖𝟎𝟎,𝒗𝒗𝟏𝟏), (𝒖𝒖𝟏𝟏,𝒗𝒗𝟎𝟎), (𝒖𝒖𝟐𝟐,𝒗𝒗𝟓𝟓), (𝒖𝒖𝟑𝟑,𝒗𝒗𝟖𝟖), (𝒖𝒖𝟒𝟒,𝒗𝒗𝟗𝟗)}

CB

A

A

𝑢𝑢3𝑢𝑢2
𝑢𝑢0

𝑢𝑢1
D

C D C C

B B B

A A A𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

𝑣𝑣5 𝑣𝑣6 𝑣𝑣7

𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

A 𝑣𝑣0 A 𝑣𝑣4

Query graph 𝑄𝑄 Data graph 𝐺𝐺
24

Subgraph Matching on CPU and GPU

• CPU-based algorithms:
• Sequential: CFL[1], EmptyHeaded[2], DAF[3], Graphflow[4], VEQ[5], …
• Parallel: PGX.ISO[6], pRI[7], CECI[8], …
• Either graph exploration based (DFS enumeration) or join based
• Effective heuristics for filtering out candidate vertices, ordering query vertices
• Indices or auxiliary structures are constructed.
• Highly optimized yet some cases still take long time

• GPU-based algorithms:
• NEMO[9], GPSM[10], GunRockSM[11]. Latest: GSI[12], ALFTJ[13], CuTS[14]

• Filtering and ordering methods less effective than CPU-based algorithms
• BFS enumeration consumes a lot of memory

25

Existing Relation Storage for Graphs

• Trie (CSR) is commonly used
on the CPU

• Efficient retrieval of neighbors
• Many vertices and offsets for

big relations
• Expensive to update

𝒖𝒖𝟎𝟎 𝒖𝒖𝟐𝟐
𝑣𝑣0 𝑣𝑣5
𝑣𝑣1 𝑣𝑣5
𝑣𝑣1 𝑣𝑣6
𝑣𝑣2 𝑣𝑣6
𝑣𝑣2 𝑣𝑣7

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

0 1 3 4 5 5 5 5 5 5 5 5 5

𝑣𝑣5 𝑣𝑣5 𝑣𝑣6 𝑣𝑣6 𝑣𝑣7

vertices

offsets

neighbors

26

Our Relation Storage: Cuckoo Tries for G

• Trie (CSR) is commonly used
on the CPU,

• Efficient retrieval of neighbors
• Many vertices and offsets for

big relations
• Expensive to update

• Cuckoo tries
Level 1: Cuckoo hash tables
• Multiple hash tables, 𝑶𝑶(𝟏𝟏)

search time, no warp
divergence

• Bucket size set to fully utilize
the memory bandwidth

Level 2: record #neighbors for
each vertex

𝑣𝑣1 𝑣𝑣2

𝑣𝑣5 𝑣𝑣6 𝑣𝑣6

0 2 2 1

Hash tables

offsets

neighbors

𝑣𝑣0 𝑣𝑣3

𝑣𝑣5 𝑣𝑣7

0 1 1 1

Level 1

Level 2

Level 3

bucket size
= 2

Start
position Size

27

𝒖𝒖𝟎𝟎 𝒖𝒖𝟐𝟐
𝑣𝑣0 𝑣𝑣5
𝑣𝑣1 𝑣𝑣5
𝑣𝑣1 𝑣𝑣6
𝑣𝑣2 𝑣𝑣6
𝑣𝑣2 𝑣𝑣7

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

0 1 3 4 5 5 5 5 5 5 5 5 5

𝑣𝑣5 𝑣𝑣5 𝑣𝑣6 𝑣𝑣6 𝑣𝑣7

vertices

offsets

neighbors

... ...

Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables

28

𝑣𝑣1 𝑣𝑣2 𝑣𝑣0 𝑣𝑣3

Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment

29

𝑣𝑣1 𝑣𝑣2 𝑣𝑣0 𝑣𝑣3

Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment
• Level 3: Fill in neighbors

30

𝑣𝑣1 𝑣𝑣2

𝑣𝑣5 𝑣𝑣6 𝑣𝑣6

0 2 2 1

𝑣𝑣0 𝑣𝑣3

𝑣𝑣5 𝑣𝑣7

0 1 1 1

Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment
• Level 3: Fill in neighbors

• Search of an edge 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• A thread finds 𝑣𝑣 in Level 1
• Go to Level 2 to find starting position of v’s neighbor
• Binary search of 𝑣𝑣𝑣 in the neighbor array of 𝑣𝑣

• Deletion of an edge 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• Same as searching 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• Deal with holes within neighbor arrays at the end of the entire construction

31

𝑣𝑣1 𝑣𝑣2

𝑣𝑣5 𝑣𝑣6 𝑣𝑣6

0 2 2 1

𝑣𝑣0 𝑣𝑣3

𝑣𝑣5 𝑣𝑣7

0 1 1 1

Enumeration: Parallel BFS vs DFS

• Parallel-BFS enumeration
• Utilized by most GPU-based algorithms
• In each step, all partial results are extended by one vertex concurrently
• Large memory consumption and many memory accesses

• Parallel-DFS enumeration
• Each thread extends one edge at a time until it finds a complete match or fails
• Alleviate the memory consumption issue
• Load imbalance between threads due to the irregularity of the search space

32

Hybrid BFS-DFS enumeration

• Hybrid parallel BFS-DFS extension method
• Organize vertices in 𝑄𝑄 into groups (𝑉𝑉0,𝑉𝑉1, … ,𝑉𝑉𝑛𝑛) based on the structure of 𝑄𝑄

• Dense vertex, then sparse vertices, and finally tree vertices

𝑣𝑣10 𝑣𝑣11

𝑣𝑣6 𝑣𝑣7

𝑣𝑣2 𝑣𝑣3𝑣𝑣1𝑣𝑣0

𝑣𝑣5

𝑣𝑣9𝑣𝑣8

𝑣𝑣4

33

Hybrid BFS-DFS enumeration
• Hybrid parallel BFS-DFS extension method

• Organize vertices in 𝑄𝑄 into groups (𝑉𝑉0,𝑉𝑉1, … ,𝑉𝑉𝑛𝑛) based on the structure of 𝑄𝑄
• Dense vertex, then sparse vertices, and finally tree vertices

• Iterate over each group to extend current partial results
• Extend vertices within the current group in DFS
• Write partial results to global memory (BFS)

𝑣𝑣10 𝑣𝑣11

𝑣𝑣6 𝑣𝑣7

𝑣𝑣2 𝑣𝑣3𝑣𝑣1𝑣𝑣0

𝑣𝑣5

𝑣𝑣9𝑣𝑣8

𝑣𝑣4

Groups

𝑉𝑉0
Warp

#1
Warp

#2
Warp
#N-1

DFS DFS DFS

Warp
#0

DFS

Global memory

Global memory

𝑄𝑄
… …

…

Index

Index

Lane
⑴

⑵

⑶

⑸

…

… …

⑷

#0
#1
#2
#3
#4

… …

…

Local 𝜑𝜑

𝑉𝑉1

𝑉𝑉2

𝑉𝑉3
𝑉𝑉4

#31

34

Hybrid BFS-DFS enumeration

• Improve DFS: A group is smaller than Q - more balanced
• Improve BFS by memory management

• Store partial results in a cyclic queue
• Before matching the group 𝑉𝑉𝑣𝑣, remove the partial results for 𝑉𝑉𝑣𝑣−2 (𝑚𝑚 ≥ 2).
• If the queue is full at 𝑉𝑉𝑣𝑣, roll back to 𝑉𝑉𝑣𝑣−1 results and match all remaining

vertices in DFS.

35

Summary on EGSM

• Problem characteristics
oMemory access intensive
o Irregular memory access patterns
oComplex control flows with branches

• Our method
oA GPU-based data structure Cuckoo trie for storing candidate edges
oParallel construction and pruning routines on the Cuckoo trie
oA BFS-DFS matching strategy with memory management

Source code available at https://github.com/RapidsAtHKUST/EGSM

36

RapidGKC:
GPU-accelerated K-mer Counting
ICDE’24

Yiran Cheng1, Xibo Sun1, Qiong Luo1,2

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)

K-mer Counting

38

• A k-mer refers to a length-k substring of a sequence.
• Genomic sequence fragments (strings of bases ‘A’, ‘C’, ‘G’, ‘T’) are called reads.

• A common routine in genomic data analysis is k-mer counting, i.e.,
counting the number of occurrences of each unique k-mer.

• Some bioinformatics applications that require k-mer counting:
genome assembly, genome profiling, and sequence alignment [1][2][3][4]

K-mer Counting is Expensive

• K-mer counting takes a lot of space.
• Current methods follow a partitioning-and-counting paradigm

• Phase 1 - Partitioning: split all k-mers into multiple disjoint partitions
• Phase 2 - Counting: count k-mers by partitions
• Advantages:

• Reduce the peak memory usage by storing temporary partition data on disk
• Allow parallel processing among partitions

• K-mer counting is time-consuming.
• Partitioning-and-counting incurs significant time in computation and IO

39

K-mer Counting (Phase 1 – Partitioning)

Fig. A read, its k-mers, k-mers’ minimizers,
and generated super k-mers

40

Phase 1 - Partitioning: minimum substring partitioning
(MSP) [5]

Split each read into k-mers, identify their
minimizers, and generate super k-mers

Minimizer: the canonical smallest length-𝑝𝑝
substring of a k-mer
Super k-mers are generated on consecutive k-
mers that have the same minimizer.

Store generated super k-mers that have the same
minimizer into one partition, rather than storing k-
mers in partitions, for space saving.

Storing k-mers: 6X9 = 54 bases
Storing super k-mers: 10+9+11 = 30 bases

K-mer Counting (Phase 2 – Counting)

• Phase 2 - Counting: count k-mers in each partition
• Extract k-mers from super k-mers and then count
• Counting approaches:

• Sort (radix sort) – KMC2 [6], KMC3 [7] …
• Hash table – CHTKC [8], MSPKC [9], Gerbil [10] …
• Others (bloom filter, quotient filter, etc.) – Squeakr [11] …

• Advantages of radix sort over hash table on GPUs:
• Fixed memory requirement given a partition;

avoid table size estimation and reallocation
• A common parallel primitive on GPU
• Faster counting performance than hashing in our tests

• Over 2.5x faster than GPU-based hash table counting [12]
Fig. Counting speedups of GPU radix sort vs.

GPU-based hash table

41

Problems in Existing Work and Our Solutions
• Super k-mer generation took considerable time.

• Solution: GPU-based super k-mer generation

• The signature rule was inefficient on the GPU due to branch divergence.
• Solution: a new signature rule that is as effective and has less branch divergence.

• Super k-mer decoding was sequential.
• Solution: a new encoding scheme that supports fast parallel encoding and decoding.

• Performance improvement was limited to in-memory counting.
• Solution: Overlapping IO and in-memory processing, GPU-CPU co-processing, and

multi-GPU processing.

42

Workflow of RapidGKC
• Load reads into a thread-safe queue
• CPU and GPU worker threads load batch

of reads from the queue
• Phase 1 – Partitioning

• Read encoding
• Super k-mer generation

• Signature calculation
• Super k-mer offset generation

• Super k-mer encoding
• Store super k-mers into corresponding

partitions
• Phase 2 – Counting

• Load super k-mers from a partition
• Decode super k-mers and extract k-mers
• Sort all k-mers
• Count number of duplicates of each k-mer

• *underlined steps: GPU-accelerated Fig. The workflow of RapidGKC (left: CPU side, right: GPU side).
43

Signature Rule

Fig. An example comparing conventional minimizer and signature
over their generated super k-mers.

44

Problems with the minimizer in MSP:
It generates relatively short super k-mers and thereby
results in large temporary data sizes.
The generated partitions are of skewed sizes because the
minimizers starting with consecutive “A”s are likely to be
the alphabetically smallest.

Existing solution:
Using signature rather than minimizer.
The signature proposed by KMC2 [6]:
the canonically minimum length-𝑝𝑝 substring of a k-mer
that can pass the signature rule that it neither starts
with ”AAA” or ”ACA” nor contains ”AA” at any position
except the beginning.

Our Improved Signature Rule

• Problem of the existing signature rule:
• Costly to check whether “AA” appears at any position
• Causes branch divergence and runs slow on the GPU

• Our solution in RapidGKC: a new signature rule
• No “AAA”, “ACA”, “CAA”, or “CCA” at the beginning, and no “AAA” at the end is

allowed.
• Constant time complexity
• Reduce branch divergence

45

Encoding Schemes
• Encoding in existing k-mer counting

tools
• Length-and-data encoding:

• Each base (A, C, T, G) is encoded with two
bits

• Store the length and bases of super k-mers
consecutively

• Problems:
• Only support sequential decoding
• Causes a lot of decoded data to be

transferred from CPU to GPU for subsequent
processing on the GPU

• Significant component(30%, in our
experiments) of in-memory processing time
with other components accelerated by GPU

Fig. The length-and-data super k-mer encoding
in existing k-mer counting methods.

46

Problems of existing parallel encoding methods
E.g., CSR, StreamVByte [13]
Lengths (offsets) and data are stored in
inter-related arrays, so synchronization cost is high.

Our Encoding Scheme

Fig. Our proposed super k-mer encoding method supports
parallel encoding and decoding.

47

Two control bits and six data bits (three bases) in one byte
Control bits indicate how many bases are stored in the
current byte; the first and last bytes may have “*” fillers.
Multiple threads can start decoding from any position of
the data

Advantages
Support parallel encoding and decoding,
so super k-mers can be decoded on the
GPU efficiently

GPU parallel decoding is 40x faster
than single CPU thread decoding

Reduce the size of data transfer from host
to GPU in Phase 2

Transfer the super k-mers rather than
all the extracted k-mers

Disadvantages
Some wasted space in the first and last
bytes of each super k-mer
Some cost for each thread to find the first
byte of a super k-mer when starting from
an arbitrary point in the super k-mers

Summary on RapidGKC

• Problem characteristics
• Memory capacity bound
• Memory access intensive
• Complex workflows involving IO, partitioning, and multi-step processing
• Multicore CPUs and GPUs have comparable performance at times

• Our solution: an end-to-end GPU-accelerated k-mer counting system
• Develop GPU kernels for partitioning and counting phases respectively
• Employ both CPUs and GPUs as parallel workers
• Overlap IO and in-memory processing
• A new encoding scheme that supports fast parallel encoding and decoding
• A new signature rule that reduces branch divergence on the GPU.

Code available at https://github.com/cyr20040123/RapidGKC

48

Concluding Remarks

• GPU acceleration for DPA can be effective.
• Understand problem characteristics
• Design suitable data structures, algorithms, and workflows
• Utilize data parallel primitives and shared memory
• Reduce warp divergence
• End-to-end system development and evaluation

• It involves considerable engineering effort due to problem diversity.
• Promising direction with technology advances and applications

49

Group Github: https://github.com/RapidsAtHKUST

Acknowledgment

• Yiran Cheng (PhD 2025
expected) for RapidKGC

• Xibo Sun (PhD 2024
expected) for EGSM

• Honghao Liu (MPhil 2022)
for cuGridder

50

Come and visit us!
51

HKUST, Hong Kong, since 1991
https://hkust.edu.hk/

HKUST (Guangzhou), China, since 2022
https://www.hkust-gz.edu.cn/

References by cuGridder
[1] T. J. Cornwell, K. Golap, and S. Bhatnagar, "The noncoplanar baselines effect in radio interferometry: The w-projection algorithm,"

IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 5, pp. 647–657, 2008.

[2] T. Cornwell, M. Voronkov, and B. Humphreys, “Wide field imaging for the square kilometre array,” Proc SPIE, vol. 8500, 07 2012.

[3] A. R. Offringa and et al., "wsclean: an implementation of a fast, generic wide-field imager for radio astronomy," Monthly Notices
of the Royal Astronomical Society, vol. 444, no. 1, p. 606–619, Aug 2014.

[4] Haoyang Ye, Stephen F Gull, Sze M Tan, Bojan Nikolic, "High accuracy wide-field imaging method in radio interferometry," Monthly
Notices of the Royal Astronomical Society, Volume 510, Issue 3, March 2022, Pages 4110–
4125, https://doi.org/10.1093/mnras/stab3548

[5] P. Arras, M. Reinecke, R. Westermann, and T. A. Enßin, "Efficient wide-field radio interferometry response," Astronomy &
Astrophysics, vol. 646, p. A58, Feb 2021.

[6] Barnett, Alexander H., Jeremy Magland, and Ludvig af Klinteberg. "A parallel nonuniform fast Fourier transform library based on
an “exponential of semicircle" kernel." SIAM Journal on Scientific Computing 41.5 (2019): C479-C504.

[7] Y. Shih, G. Wright, J. Anden, J. Blaschke, and A. H. Barnett, "cufinufft: a load-balanced gpu library for general-purpose
nonuniform ffts," in 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

[8] https://public.nrao.edu/telescopes/vla/

[9] B. Veenboer, M. Petschow, and J. W. Romein, "Image-domain gridding on graphics processors," in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp. 545–554.

52

https://doi.org/10.1093/mnras/stab3548
https://public.nrao.edu/telescopes/vla/

References by EGSM
[1] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Effcient Subgraph Matching by Postponing Cartesian Products. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 1199–1214.

[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. EmptyHeaded: A Relational Engine for Graph Processing. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 431–446.

[3] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. 2019. Ecient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing
Set Together. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 1429-1446

[4] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11 (2019), 1692–1704.

[5] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin Han. 2021. Versatile Equivalences: Speeding up Subgraph Query Processing and Subgraph
Matching. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021. ACM, 925–937.

[6] Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi, and Jay Banerjee. 2014. PGX.ISO: Parallel and Ecient In-Memory Engine for Subgraph Isomorphism. In Second
International Workshop on Graph Data Management Experiences and Systems, GRADES 2014, co-loated with SIGMOD/PODS 2014, Snowbird, Utah, USA, June 22, 2014. CWI/ACM, 5:1–5:6.

[7] Raphael Kimmig, Henning Meyerhenke, and Darren Strash. 2017. Shared Memory Parallel Subgraph Enumeration. In IPDPSW.

[8] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 1447–1462.

[9] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiaoli Li. 2017. Network Motif Discovery: A GPU Approach. IEEE Trans. Knowl. Data Eng. 29, 3 (2017), 513–528.

[10] Ha Nguyen Tran, Jung-Jae Kim, and Bingsheng He. 2015. Fast Subgraph Matching on Large Graphs using Graphics Processors. In Database Systems for Advanced Applications - 20th
International Conference, DASFAA 2015, Hanoi, Vietnam, April 20-23, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9049). Springer, 299–315.

[11] Leyuan Wang and John D. Owens. 2020. Fast Gunrock Subgraph Matching (GSM) on GPUs. CoRR abs/2003.01527 (2020). arXiv:2003.01527 https://arxiv.org/abs/2003.01527

[12] Li Zeng, Lei Zou, M. Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-friendly Subgraph Isomorphism. In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX,
USA, April 20-24, 2020. IEEE, 1249–1260.

[13] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. 2022. Accelerating multi-way joins on the GPU. VLDB J. 31, 3 (2022), 529–553.

[14] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed multi-GPU systems using trie
based data structure. In SC ’21: The International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021. ACM,
69:1–69:14.

53

https://arxiv.org/abs/2003.01527

References by RapidGKC
[1] S. C. Manekar and S. R. Sathe, “A benchmark study of k-mer counting methods for high-throughput sequencing,” GigaScience, vol. 7, no. 12, p. giy125, 2018.
[2] J. Ruan and H. Li, “Fast and accurate long-read assembly with wtdbg2,” Nature methods, vol. 17, no. 2, pp. 155–158, 2020.
[3] T. R. Ranallo-Benavidez, K. S. Jaron, and M. C. Schatz, “Genomescope 2.0 and smudgeplot for reference-free profiling of polyploid genomes,” Nature
communications, vol. 11, no. 1, p. 1432, 2020.
[4] D. Kleftogiannis, P. Kalnis, and V. B. Bajic, “Progress and challenges in bioinformatics approaches for enhancer identification,” Briefings in bioinformatics, vol. 17, no.
6, pp. 967–979, 2016.
[5] Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, and S. Suri, “Memory efficient minimum substring partitioning,” Proceedings of the VLDB Endowment, vol. 6, no. 3, pp. 169–
180, 2013.
[6] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “Kmc 2: fast and resource-frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, pp. 1569–1576,
2015.
[7] M. Kokot, M. Długosz, and S. Deorowicz, “Kmc 3: counting and manipulating k-mer statistics,” Bioinformatics, vol. 33, no. 17, pp. 2759– 2761, 2017.
[8] J. Wang, S. Chen, L. Dong, and G. Wang, “Chtkc: a robust and efficient k-mer counting algorithm based on a lock-free chaining hash table,” Briefings in
Bioinformatics, vol. 22, no. 3, p. bbaa063, 2021.
[9] Y. Li et al., “Mspkmercounter: a fast and memory efficient approach for k-mer counting,” arXiv preprint arXiv:1505.06550, 2015.
[10] M. Erbert, S. Rechner, and M. Muller-Hannemann, “Gerbil: a fast ¨ and memory-efficient k-mer counter with gpu-support,” Algorithms for Molecular Biology, vol.
12, pp. 1–12, 2017.
[11] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “Squeakr: an exact and approximate k-mer counting system,” Bioinformatics, vol. 34, no. 4, pp. 568–575, 2018.
[12] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu, and ¨ B. Schmidt, “General-purpose gpu hashing data structures and their application in accelerated
genomics,” Journal of Parallel and Distributed Computing, vol. 163, pp. 256–268, 2022.
[13] D. Lemire, N. Kurz, and C. Rupp, “Stream vbyte: Faster byte-oriented integer compression,” Information Processing Letters, vol. 130, pp. 1–6, 2018.

54

	GPU Acceleration for�Data Processing and Analytics
	Data Processing and Analytics (DPA)
	Graphics Processing Units (GPUs) on the Market
	NVIDIA GPUs for General-Purpose Computing
	NVDIA GPU Performance Trends
	GPU Architecture in Comparison with CPU
	Multi-GPU Computers and GPU Clusters
	CUDA Programming Model
	CUDA Threads
	CUDA Memory Hierarchy
	Accelerating DPA Tasks on CUDA
	Our Recent Work as Examples
	Slide Number 13
	Radio Interferometric Imaging
	State of the Art
	 Our Work
	 Workflow of cuGridder
	 Convolution on the GPU
	 Mask Function Evaluation on the GPU
	Summary on cuGridder
	Slide Number 21
	Subgraph Matching
	Subgraph Matching Example
	Subgraph Matching Example (Continued)
	Subgraph Matching on CPU and GPU
	Existing Relation Storage for Graphs
	Our Relation Storage: Cuckoo Tries for G
	Operations on Cuckoo Tries
	Operations on Cuckoo Tries
	Operations on Cuckoo Tries
	Operations on Cuckoo Tries
	Enumeration: Parallel BFS vs DFS
	Hybrid BFS-DFS enumeration
	Hybrid BFS-DFS enumeration
	Hybrid BFS-DFS enumeration
	Summary on EGSM
	RapidGKC:�GPU-accelerated K-mer Counting�ICDE’24�
	K-mer Counting
	K-mer Counting is Expensive
	K-mer Counting (Phase 1 – Partitioning)
	K-mer Counting (Phase 2 – Counting)
	�Problems in Existing Work and Our Solutions
	Workflow of RapidGKC
	Signature Rule
	Our Improved Signature Rule
	Encoding Schemes
	Our Encoding Scheme
	Summary on RapidGKC
	Concluding Remarks
	Acknowledgment
	Come and visit us!
	References by cuGridder
	References by EGSM
	References by RapidGKC

