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Data Processing and Analytics (DPA)

• Workload characteristics
• Computation-intensive or data-intensive
• Relatively simple or complex control flow
• In-memory or involving multiple passes of disk IO
• Long running time and/or large memory consumption

• An effective approach to performance improvement
• Hardware acceleration

• This talk’s focus
• Accelerating a few DPA tasks with the GPU (Graphics Processing Unit)
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Graphics Processing Units (GPUs) on the Market

https://www.precedenceresearch.com/graphic-processing-unit-market

•Intel
•IBM
•Samsung
•NVIDIA
•Siemens AG
•AMD
•Qualcomm
•Google
•Dassault Systems
•Sony

•Computer
•Gaming Console
•Smartphone
•Tablet
•Television
•Others

•Integrated
•Dedicated
•Hybrid

•IT & Teleco
•Electronics
•Media & Entertainment
•Defense & Intelligence
•Others
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NVIDIA GPUs for General-Purpose Computing
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NVIDIA GPU Architectures
•Ada Lovelace Architecture (Sep 2022)
•Hopper Architecture (March 2022)
•Ampere Architecture (2020)
•Turing Architecture (2018)
•Volta Architecture (2017)
•Pascal Architecture (2016)
•Maxwell Architecture (2014)
•Kepler Architecture (2012)
•Fermi Architecture (2010)
•Tesla Architecture (2006)
•Curie Architecture 2004)
•Rankine (2003)
•Kelvin (2001)
•Celsius (1999)

Language Solutions
• CUDA Toolkit
• NVIDIA HPC SDK
• OpenACC directives
• PyCUDA
• Altimesh Hybridizer
• OpenCL
• AleaGPU for F#.

Tools & Ecosystem
• GPU-Accelerated Libraries
• Performance Analysis Tools
• Debugging Solutions
• Data Center Tools
• Accelerated Web Services
• Cluster Management

GPU-Accelerated Libraries
• Math Libraries
  cuBLAS, cuFFT, cuSparse,...
• Image and Video Libraries
  nvJPEG, codec, optical flow...
• Deep Learning
  cuDNN, DALI, TensorRT,...
• Parallel Algorithms
  Prefix sum, sort, reduce,...
• Communication Libraries
  NVSHMEM for GPU memory
  NCCL for multi-GPU/-node
• Partner Libraries
  OpenCV for computer vision
  Gunrock for graph processing
   CVVILib for medical imaging

https://developer.nvidia.com/tools-ecosystem



NVDIA GPU Performance Trends

5https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/



GPU Architecture in Comparison with CPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-

background/index.html
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An NVIDIA A100 GPU
- 108 SM (Streaming 

Multiprocessor), 
- a 40 MB L2 cache, and 
- up to 2039 GB/s bandwidth 

from 80 GB of HBM2 memory



Multi-GPU Computers and GPU Clusters
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https://www.researchgate.net/figure/rCUDA-cluster-configurations_fig7_280883404
https://www.gigabyte.com/us/Enter
prise/GPU-Server/G481-HA0-rev-200

GPUs are computational devices; they require CPUs to be the host!



CUDA Programming
Model

• A CUDA program consists of Host (CPU) and Device (GPU) 
components.

• The CPU: 
• Allocate and deallocate GPU memory
• Transfer data between the CPU and the GPU
• Launch GPU programs (kernels)

• The GPU:
• Execute a kernel program with massive GPU threads

• CPU and GPU execution in parallel; explicit synchronization or 
through memory transfer (synchronized by default)
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CUDA Threads
• A kernel program is executed by a thread grid specified 

by the user.
• A grid consists of 10s-1000s thread blocks.
• A thread block contains 10s-1000s threads. Grids and 

blocks can be 1 to 3 dimensions.
• Each thread block runs in a single SM.
• Number of threads in a block should be set to a 

multiple of 32, the current warp size.
• A warp is the scheduling unit in the GPU, 32 threads 

with consecutive IDs. 
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CUDA Memory Hierarchy
• Global memory 

• Tens of gigabytes
• High bandwidth high latency
• Host-allocated GPU variables 
• Shared by all threads in the grid

• Shared memory 
• Tens of kilobytes 
• Residing in each streaming multiprocessor
• Low access latency
• Variables declared as “shared”
• Shared by threads within a thread block

• Registers
• Lowest latency 
• Local variables in GPU kernel programs
• Private to each individual thread
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Accelerating DPA Tasks on CUDA 

• Identify parallelisms
• On GPU and CPU; between CPU and GPU; between processor,  memory, IO.

• Design suitable data structures and algorithms
• Various arrays for concurrent access; lock-free algorithms

• Maximize GPU occupancy
• Increase number of threads
• Reduce warp divergence

• Coalesced memory access for bandwidth
• Shared memory for latency 
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Our Recent Work as Examples
• cuGridder: 

Efficient Radio 
Interferometric 
Imaging on the 
GPU
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• EGSM: Efficient GPU-
Accelerated Subgraph 
Matching

• RapidGKC:
GPU-accelerated 
K-mer Counting
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Efficient Radio Interferometric 
Imaging on the GPU
eScience’22

Honghao Liu1, Qiong Luo1,2, and Feng Wang3

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)
3Guangzhou University
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Radio Interferometric Imaging

• Radio Interferometer: an array of radio antennas receiving the radio signals
• Visibility and Sky Brightness

• V(u,v,w) – a complex function containing the information from a baseline
• I(l,m) – the intensity of the source in the sky

• Imaging uses Fourier Transform to obtain I(l,m) from V(u,v,w)

Figure 1: Very Large Array[8] Figure 2: Visibility and Sky Brightness

𝑉𝑉 𝑢𝑢, 𝑣𝑣,𝑤𝑤 = ��
𝐼𝐼(𝑙𝑙,𝑚𝑚)
𝑛𝑛

𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑢𝑢𝑢𝑢+𝑣𝑣𝑣𝑣+𝑤𝑤(𝑛𝑛−1))
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State of the Art

• Previous work[1,2,3] proposed CPU-based accurate imaging algorithms
• W-gridder[4] paralellized the most accurate imaging algorithm[5] on the CPU 
• FINUFFT[6] and cuFINUFFT[7]: the fastest Non-uniform Fourier Transform 

(NUFFT) on the CPU and the GPU respectively

Figure 3: 3D NUFFT workflow

Figure 4: Gridding workflow 15



Our Work

• Propose cuGridder, a GPU-based CUDA C library for radio 
interferometric imaging

• Implement kernel programs for each step and optimize the memory 
access pattern on the GPU

• Achieve high performance
• 5-10x faster than cuFINUFFT for the convolution
• 3-5x faster than FINUFFT and cuFINUFFT for the NUFFT
• 2-3x faster than the w-gridder for the entire gridding workflow

• Provide a python interface for astronomers to use the library
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Workflow of cuGridder
• Initialization

• Allocate host and device memory
• Load data from the disk

• Preprocessing – convert matrices to 1D arrays
• Coordinates transform – shift and scale (u,v,w) to 

[-𝜋𝜋,𝜋𝜋)
• Convolution 

• Histogram, prefix sum and gather parallel primitives 
partition data based on (u,v,w)

• Convolution primitive works on partitioned data 
• 2D FFT – computed by the NVIDIA cuFFT library
• 1D DFT – transform along the 𝑤𝑤 dimension 
• Correction – remove the effect of the mask 

function from the convolution Figure 5: the gridding workflow of cuGridder
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Convolution on the GPU 

• Each thread corresponds to an 
output point b

• Partitioning
• Histogram counts number of points in 

each bin
• Prefix sum adds number of points of 

preceding bins
• Scatter to location = in-bin index + 

prefix sum[Bin index]

Figure 6: 1D example of mask function and partition

𝑓𝑓 ∘ 𝜙𝜙 = �𝜙𝜙 𝑢𝑢 − 𝑏𝑏𝑘𝑘 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑢𝑢
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Mask Function Evaluation on the GPU

• The mask function evaluation is one of the 
heaviest computational tasks

• Taylor Series Approximation
• Divide [0,1) into 𝑀𝑀 equal segments,
• For 𝑥𝑥 in 𝑘𝑘th segment, 𝜙𝜙(𝑥𝑥) is evaluated by

• Save the coefficients into a lookup table, and load 
them into GPU shared memory for evaluation

𝜙𝜙 𝑥𝑥 = 𝜙𝜙 𝑥𝑥𝑘𝑘 + 𝜙𝜙′ 𝑥𝑥𝑘𝑘 𝑥𝑥 − 𝑥𝑥𝑘𝑘 + ⋯+
𝜙𝜙 𝑛𝑛 𝑥𝑥𝑘𝑘

𝑛𝑛!
(𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑛𝑛

𝑅𝑅𝑛𝑛 𝑥𝑥 = 𝜊𝜊((𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑛𝑛)

0 1𝑥𝑥1 𝑥𝑥3𝑥𝑥2 𝑥𝑥4 𝑥𝑥𝑘𝑘

Figure 7: mask function
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Summary on cuGridder

• Problem characteristics
• Computation intensive
• In-memory processing
• Simple control flows and regular data access patterns

• Our method
• Entire computation on the GPU after preprocessing
• Massive thread parallelism to utilize the GPU
• Data-parallel primitives to utilize memory bandwidth
• Coefficient lookup table in the shared memory to reduce latency

Source code available at https://github.com/RapidsAtHKUST/cuGridder
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Efficient GPU-Accelerated 
Subgraph Matching
SIGMOD’23

Xibo Sun1, Qiong Luo1,2

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)
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Subgraph Matching

• Given vertex-labeled, undirected graphs 𝑄𝑄 (query graph) and 𝐺𝐺 (data 
graph), find all subgraphs in 𝐺𝐺 that are isomorphic to 𝑄𝑄.

• NP-hard problem. 
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Subgraph Matching Example

• A, B, C, and D are vertex labels
• 𝑢𝑢𝜋𝜋, 𝑣𝑣𝑗𝑗 are vertices
• Two matches

• {(𝒖𝒖𝟎𝟎,𝒗𝒗𝟎𝟎), (𝒖𝒖𝟏𝟏,𝒗𝒗𝟏𝟏), (𝒖𝒖𝟐𝟐,𝒗𝒗𝟓𝟓), (𝒖𝒖𝟑𝟑,𝒗𝒗𝟖𝟖), (𝒖𝒖𝟒𝟒,𝒗𝒗𝟗𝟗)}, and
• {(𝑢𝑢0,𝑣𝑣1), (𝑢𝑢1,𝑣𝑣0), (𝑢𝑢2,𝑣𝑣5), (𝑢𝑢3,𝑣𝑣8), (𝑢𝑢4,𝑣𝑣9)}
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Subgraph Matching Example (Continued)

• A, B, C, and D are labels
• 𝑢𝑢𝑥𝑥, 𝑣𝑣𝑥𝑥 are vertices
• Two matches

• {(𝑢𝑢0,𝑣𝑣0), (𝑢𝑢1,𝑣𝑣1), (𝑢𝑢2,𝑣𝑣5), (𝑢𝑢3,𝑣𝑣8), (𝑢𝑢4,𝑣𝑣9)}, and
• {(𝒖𝒖𝟎𝟎,𝒗𝒗𝟏𝟏), (𝒖𝒖𝟏𝟏,𝒗𝒗𝟎𝟎), (𝒖𝒖𝟐𝟐,𝒗𝒗𝟓𝟓), (𝒖𝒖𝟑𝟑,𝒗𝒗𝟖𝟖), (𝒖𝒖𝟒𝟒,𝒗𝒗𝟗𝟗)}
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Subgraph Matching on CPU and GPU

• CPU-based algorithms:
• Sequential: CFL[1], EmptyHeaded[2], DAF[3], Graphflow[4], VEQ[5], …
• Parallel: PGX.ISO[6], pRI[7], CECI[8], …
• Either graph exploration based (DFS enumeration) or join based
• Effective heuristics for filtering out candidate vertices, ordering query vertices 
• Indices or auxiliary structures are constructed. 
• Highly optimized yet some cases still take long time

• GPU-based algorithms:
• NEMO[9], GPSM[10], GunRockSM[11]. Latest: GSI[12], ALFTJ[13], CuTS[14]

• Filtering and ordering methods less effective than CPU-based algorithms
• BFS enumeration consumes a lot of memory 
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Existing Relation Storage for Graphs

• Trie (CSR) is commonly used 
on the CPU

• Efficient retrieval of neighbors
• Many vertices and offsets for 

big relations
• Expensive to update

𝒖𝒖𝟎𝟎 𝒖𝒖𝟐𝟐
𝑣𝑣0 𝑣𝑣5
𝑣𝑣1 𝑣𝑣5
𝑣𝑣1 𝑣𝑣6
𝑣𝑣2 𝑣𝑣6
𝑣𝑣2 𝑣𝑣7

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11

0 1 3 4 5 5 5 5 5 5 5 5 5

𝑣𝑣5 𝑣𝑣5 𝑣𝑣6 𝑣𝑣6 𝑣𝑣7

vertices

offsets

neighbors
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Our Relation Storage: Cuckoo Tries for G

• Trie (CSR) is commonly used 
on the CPU, 

• Efficient retrieval of neighbors
• Many vertices and offsets for 

big relations
• Expensive to update

• Cuckoo tries
Level 1: Cuckoo hash tables
• Multiple hash tables, 𝑶𝑶(𝟏𝟏)

search time, no warp 
divergence

• Bucket size set to fully utilize 
the memory bandwidth

Level 2:  record #neighbors  for 
each vertex

𝑣𝑣1 𝑣𝑣2

𝑣𝑣5 𝑣𝑣6 𝑣𝑣6

0 2 2 1

Hash tables

offsets

neighbors

𝑣𝑣0 𝑣𝑣3

𝑣𝑣5 𝑣𝑣7

0 1 1 1

Level 1

Level 2

Level 3

bucket size
= 2

Start 
position Size
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Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
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Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment
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Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment
• Level 3: Fill in neighbors
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Operations on Cuckoo Tries

• Batch-insertion
• Level 1: Push all vertices into hash tables
• Level 2: Organize offsets

• Count #neighbors, prefix sum, and reassignment
• Level 3: Fill in neighbors

• Search of an edge 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• A thread finds 𝑣𝑣 in Level 1
• Go to Level 2 to find starting position of v’s neighbor
• Binary search of 𝑣𝑣𝑣 in the neighbor array of 𝑣𝑣

• Deletion of an edge 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• Same as searching 𝑒𝑒(𝑣𝑣, 𝑣𝑣𝑣)
• Deal with holes within neighbor arrays at the end of the entire construction
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Enumeration: Parallel BFS vs DFS

• Parallel-BFS enumeration
• Utilized by most GPU-based algorithms
• In each step, all partial results are extended by one vertex concurrently
• Large memory consumption and many memory accesses

• Parallel-DFS enumeration
• Each thread extends one edge at a time until it finds a complete match or fails
• Alleviate the memory consumption issue
• Load imbalance between threads due to the irregularity of the search space
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Hybrid BFS-DFS enumeration

• Hybrid parallel BFS-DFS extension method
• Organize vertices in 𝑄𝑄 into groups (𝑉𝑉0,𝑉𝑉1, … ,𝑉𝑉𝑛𝑛) based on the structure of 𝑄𝑄

• Dense vertex, then sparse vertices, and finally tree vertices

𝑣𝑣10 𝑣𝑣11

𝑣𝑣6 𝑣𝑣7

𝑣𝑣2 𝑣𝑣3𝑣𝑣1𝑣𝑣0

𝑣𝑣5

𝑣𝑣9𝑣𝑣8

𝑣𝑣4
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Hybrid BFS-DFS enumeration
• Hybrid parallel BFS-DFS extension method

• Organize vertices in 𝑄𝑄 into groups (𝑉𝑉0,𝑉𝑉1, … ,𝑉𝑉𝑛𝑛) based on the structure of 𝑄𝑄
• Dense vertex, then sparse vertices, and finally tree vertices

• Iterate over each group to extend current partial results 
• Extend vertices within the current group in DFS
• Write partial results to global memory (BFS)
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Warp 
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Warp 
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Global memory

Global memory

𝑄𝑄
… …

…

Index

Index

Lane
⑴

⑵

⑶

⑸

…

… …
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… …
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𝑉𝑉4
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Hybrid BFS-DFS enumeration

• Improve DFS: A group is smaller than Q - more balanced
• Improve BFS by memory management

• Store partial results in a cyclic queue
• Before matching the group 𝑉𝑉𝑣𝑣, remove the partial results for 𝑉𝑉𝑣𝑣−2 (𝑚𝑚 ≥ 2). 
• If the queue is full at 𝑉𝑉𝑣𝑣, roll back to 𝑉𝑉𝑣𝑣−1 results and match all remaining 

vertices in DFS.
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Summary on EGSM

• Problem characteristics
oMemory access intensive
o Irregular memory access patterns
oComplex control flows with branches

• Our method
oA GPU-based data structure Cuckoo trie for storing candidate edges
oParallel construction and pruning routines on the Cuckoo trie
oA BFS-DFS matching strategy with memory management

Source code available at https://github.com/RapidsAtHKUST/EGSM

36



RapidGKC:
GPU-accelerated K-mer Counting
ICDE’24

Yiran Cheng1, Xibo Sun1, Qiong Luo1,2

1The Hong Kong University of Science and Technology
2The Hong Kong University of Science and Technology (Guangzhou)



K-mer Counting

38

• A k-mer refers to a length-k substring of a sequence.
• Genomic sequence fragments ( strings of bases ‘A’, ‘C’, ‘G’, ‘T’) are called reads.

• A common routine in genomic data analysis is k-mer counting, i.e.,
counting the number of occurrences of each unique k-mer.

• Some bioinformatics applications that require k-mer counting:
genome assembly, genome profiling, and sequence alignment [1][2][3][4]



K-mer Counting is Expensive

• K-mer counting takes a lot of space.
• Current methods follow a partitioning-and-counting paradigm

• Phase 1 - Partitioning: split all k-mers into multiple disjoint partitions
• Phase 2 - Counting: count k-mers by partitions
• Advantages:

• Reduce the peak memory usage by storing temporary partition data on disk
• Allow parallel processing among partitions

• K-mer counting is time-consuming.
• Partitioning-and-counting incurs significant time in computation and IO
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K-mer Counting (Phase 1 – Partitioning)

Fig. A read, its k-mers, k-mers’ minimizers, 
and generated super k-mers

40

Phase 1 - Partitioning: minimum substring partitioning 
(MSP) [5]

Split each read into k-mers, identify their 
minimizers, and generate super k-mers

Minimizer: the canonical smallest length-𝑝𝑝 
substring of a k-mer
Super k-mers are generated on consecutive k-
mers that have the same minimizer.

Store generated super k-mers that have the same 
minimizer into one partition, rather than storing k-
mers in partitions, for space saving. 

Storing k-mers: 6X9 = 54 bases
Storing super k-mers: 10+9+11 = 30 bases



K-mer Counting (Phase 2 – Counting)

• Phase 2 - Counting: count k-mers in each partition
• Extract k-mers from super k-mers and then count
• Counting approaches:

• Sort (radix sort) – KMC2 [6], KMC3 [7] …
• Hash table – CHTKC [8], MSPKC [9], Gerbil [10] …
• Others (bloom filter, quotient filter, etc.) – Squeakr [11] …

• Advantages of radix sort over hash table on GPUs:
• Fixed memory requirement given a partition;

avoid table size estimation and reallocation
• A common parallel primitive on GPU
• Faster counting performance than hashing in our tests

• Over 2.5x faster than GPU-based hash table counting [12]
Fig. Counting speedups of GPU radix sort vs. 

GPU-based hash table
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Problems in Existing Work and Our Solutions
• Super k-mer generation took considerable time.

• Solution: GPU-based super k-mer generation

• The signature rule was inefficient on the GPU due to branch divergence.
• Solution: a new signature rule that is as effective and has less branch divergence.

• Super k-mer decoding was sequential.
• Solution: a new encoding scheme that supports fast parallel encoding and decoding.

• Performance improvement was limited to in-memory counting.
• Solution: Overlapping IO and in-memory processing,  GPU-CPU co-processing, and 

multi-GPU processing.
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Workflow of RapidGKC
• Load reads into a thread-safe queue
• CPU and GPU worker threads load batch 

of reads from the queue
• Phase 1 – Partitioning

• Read encoding
• Super k-mer generation

• Signature calculation
• Super k-mer offset generation

• Super k-mer encoding
• Store super k-mers into corresponding 

partitions
• Phase 2 – Counting

• Load super k-mers from a partition
• Decode super k-mers and extract k-mers
• Sort all k-mers
• Count number of duplicates of each k-mer

• *underlined steps: GPU-accelerated Fig. The workflow of RapidGKC (left: CPU side, right: GPU side).
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Signature Rule

Fig. An example comparing conventional minimizer and signature 
over their generated super k-mers.
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Problems with the minimizer in MSP:
It generates relatively short super k-mers and thereby 
results in large temporary data sizes.
The generated partitions are of skewed sizes because the 
minimizers starting with consecutive “A”s are likely to be 
the alphabetically smallest.

Existing solution:
Using signature rather than minimizer.
The signature proposed by KMC2 [6]:
the canonically minimum length-𝑝𝑝 substring of a k-mer 
that can pass the signature rule that it neither starts 
with ”AAA” or ”ACA” nor contains ”AA” at any position 
except the beginning.



Our Improved Signature Rule

• Problem of the existing signature rule:
• Costly to check whether “AA” appears at any position
• Causes branch divergence and runs slow on the GPU

• Our solution in RapidGKC: a new signature rule
• No “AAA”, “ACA”, “CAA”, or “CCA” at the beginning, and no “AAA” at the end is 

allowed.
• Constant time complexity
• Reduce branch divergence
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Encoding Schemes
• Encoding in existing k-mer counting 

tools
• Length-and-data encoding:

• Each base (A, C, T, G) is encoded with two 
bits

• Store the length and bases of super k-mers
consecutively

• Problems:
• Only support sequential decoding
• Causes a lot of decoded data to be 

transferred from CPU to GPU for subsequent 
processing on the GPU

• Significant component(30%, in our 
experiments) of in-memory processing time 
with other components accelerated by GPU

Fig. The length-and-data super k-mer encoding 
in existing k-mer counting methods.

46

Problems of existing parallel encoding methods
E.g., CSR, StreamVByte [13]
Lengths (offsets) and data are stored in 
inter-related arrays, so synchronization cost is high.



Our Encoding Scheme

Fig. Our proposed super k-mer encoding method supports 
parallel encoding and decoding.
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Two control bits and six data bits (three bases) in one byte
Control bits indicate how many bases are stored in the 
current byte; the first and last bytes may have “*” fillers.
Multiple threads can start decoding from any position of 
the data

Advantages
Support parallel encoding and decoding, 
so super k-mers can be decoded on the 
GPU efficiently

GPU parallel decoding is 40x faster 
than single CPU thread decoding

Reduce the size of data transfer from host 
to GPU in Phase 2

Transfer the super k-mers rather than 
all the extracted k-mers

Disadvantages
Some wasted space in the first and last 
bytes of each super k-mer
Some cost for each thread to find the first 
byte of a super k-mer when starting from 
an arbitrary point in the super k-mers



Summary on RapidGKC

• Problem characteristics
• Memory capacity bound
• Memory access intensive
• Complex workflows involving IO, partitioning, and multi-step processing
• Multicore CPUs and GPUs have comparable performance at times 

• Our solution: an end-to-end GPU-accelerated k-mer counting system
• Develop GPU kernels for partitioning and counting phases respectively
• Employ both CPUs and GPUs as parallel workers
• Overlap IO and in-memory processing
• A new encoding scheme  that supports fast parallel encoding and decoding
• A new signature rule that reduces branch divergence on the GPU.

Code available at https://github.com/cyr20040123/RapidGKC
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Concluding Remarks

• GPU acceleration for DPA can be effective.
• Understand problem characteristics
• Design suitable data structures, algorithms, and workflows 
• Utilize data parallel primitives and shared memory
• Reduce warp divergence 
• End-to-end system development and evaluation

• It involves considerable engineering effort due to problem diversity.
• Promising direction with technology advances and applications
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Group Github: https://github.com/RapidsAtHKUST
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