What Matters Most In Morphologically Segmented SMT Models?

Mohammad Salameh

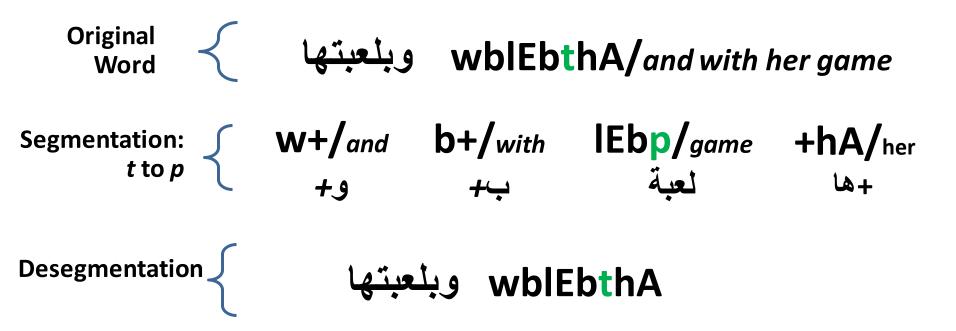
Colin Cherry

Greg Kondrak

Overview

- Determine what steps and components of phrasebased SMT pipeline benefits the most from segmenting target language.
- Testing several scenarios by changing the desegmentation point in the pipeline on English-Arabic SMT system
- Phrases with flexible boundaries are a crucial property to a successful segmentation approach
- Show impact of unsegmented LMs on generation of morphologically complex words

Segmentation/Desegmentation



- Morphological Segmentation is the process of segmenting words into meaningful morphemes.
- **Desegmentation** is the process of converting segmented words into their original orthographically and morphologically correct surface form
- Segmented vs Unsegmented vs Desegmented

Benefits and Complications of Segmentation

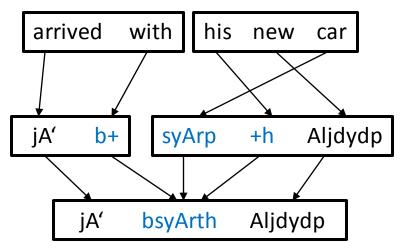
English to Arabic (Morphologically Complex Language)

Benefits segmentation bring to SMT

- Improves correspondence with morphologically simple languages
- Reduces data sparsity
- Increases expressive power by creating new lexical translations

Complications caused by segmentation

- Account for less context compared to word based models
- Less efficient statistically
- Introducing errors due to reversing the segmentation process at the end of the pipeline



Measuring Segmentation Benefits

Experimental study on English to Arabic

- Scenarios changing desegmentation point in pipeline :
 - Before evaluation
 - Before decoding
 - Before phrase extraction
- How these changes affect SMT component models:
 - Alignment model, lexical weights, LM and
- Introducing phrases with flexible boundaries
 - suffix start: +h m\$AryE fy "his projects in "
 - Prefix end: jA' b+ "arrived with"
 - Both: +hA AlAtHAd I+ "her union to"

Techniques for Morphological Segmentation/Desegmentation

Segmentation

• Penn Arabic Treebank Tokenization Scheme (El Kholy et al.[2012]) using MADA tool

Desegmentation

• Table+Rule based for Arabic (Badr et al [2008])

segmented	unsegmented	count
AbA' +km	AbAŷkm	22
AbA' +km	AbAWkm	19
DAŷqp +hm	DAŷqthm	9
kly +hA	klAhA	5

Unsegmented Baseline

- Suffers from data sparsity
- Poor correspondence
- All component models are based on words
- No desegmentation is required

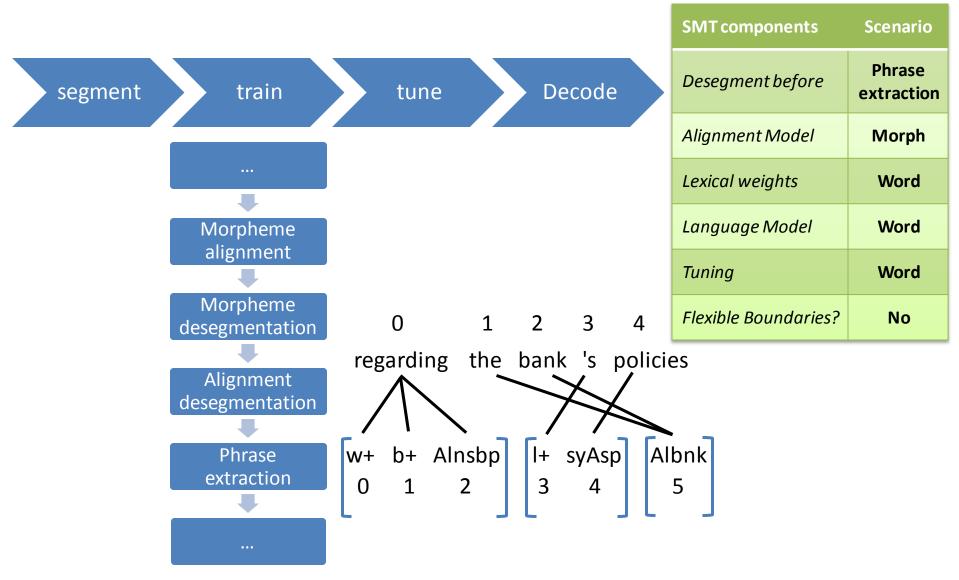
SMT components	Scenario	
Desegment before	Never Segment	
Alignment Model	Word	
Lexical weights	Word	
Language Model	Word	
Tuning	Word	
Flexible Boundaries?	No	

One-best Desegmentation

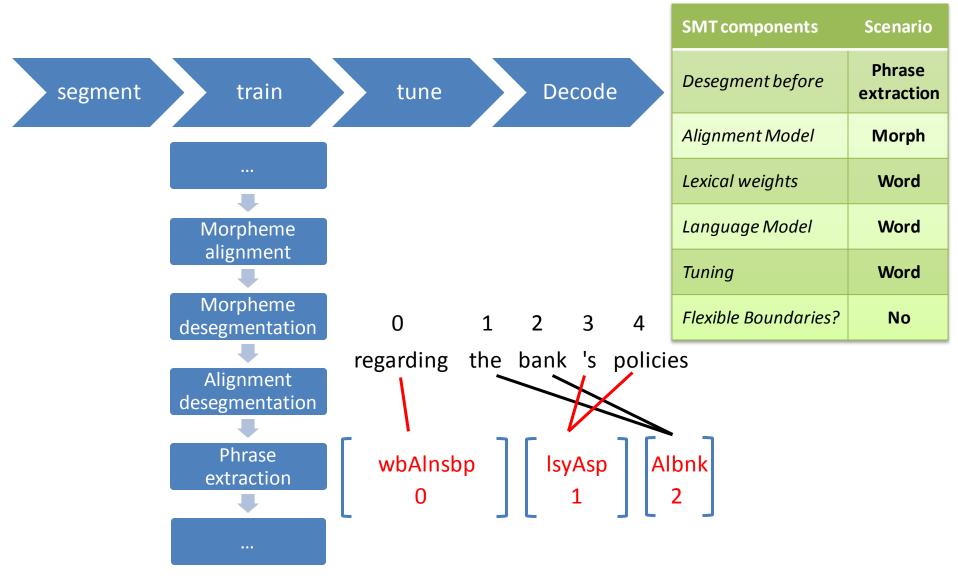
- Alleviates data sparsity
- improves correspondence
- All component models are based on morphemes
- LM spans shorter context
- Desegmentation is required at the end of the pipeline

SMT components	Scenario	
Desegment before	Evaluation	
Alignment Model	Morph	
Lexical weights	Morph	
Language Model	Morph	
Tuning	Morph	
Flexible Boundaries?	Yes	

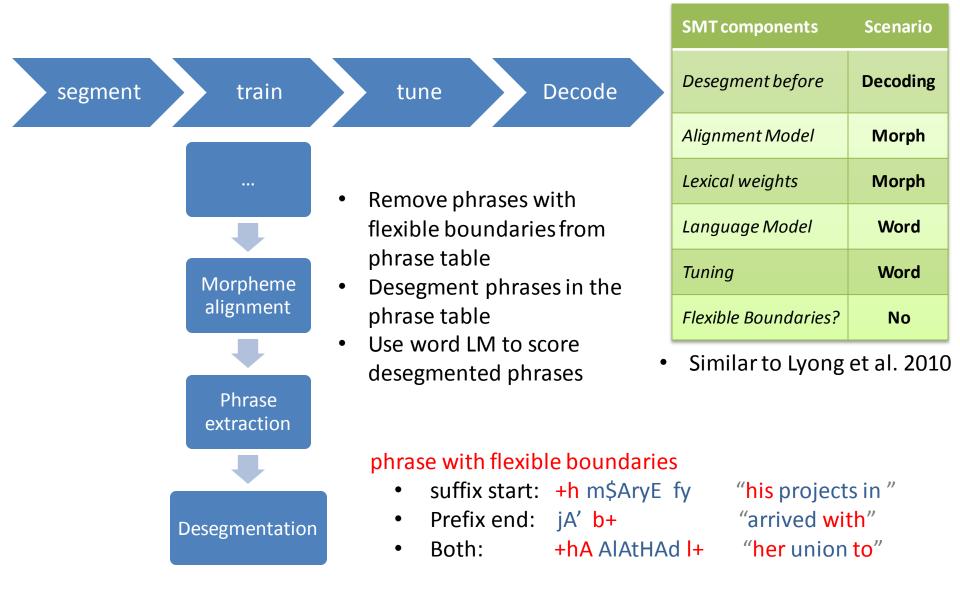
Alignment Desegmentation



Alignment Desegmentation



Phrase Table Desegmentation



Lattice Desegmentation

(Salameh et al)

Segment	SMT components	Scenario
Train : segmented model	Desegment before	Evaluation
Tune: using segmented reference	Alignment Model	Morph
Decode: generate lattice on tuning set [segmented output]	Lexical weights	Morph
	Language Model	Morph+ Word
Desegment Lattice	Tuning	Morph then Word
Retune with added new features using unsegmented reference	Flexible Boundaries?	Yes
Decode on Desegmented Model		

Benefits:

- gain access to a compact desegmented view of a large portion of the translation search space.
- Use features that reflect the desegmented target language
- Annotate with Unsegmented LM + Discontiguity features

Segmented LM scoring in Desegmented Models

- Add additional LM feature that scores segmented form to :
 - Phrase table Desegmentation
 - Alignment Desegmentation

All our problems and conflicts [kl m\$AklnA] [wxlAfAtna] [kl m\$akl +nA] [w+ xlAfAt +nA]

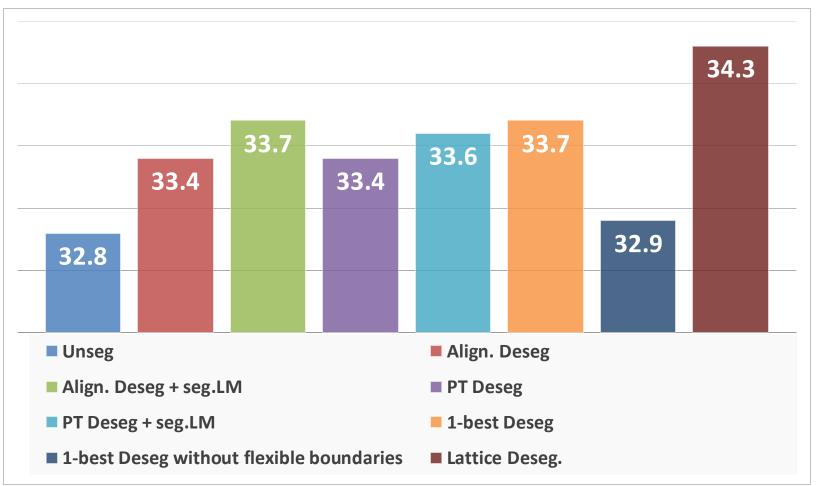
Data

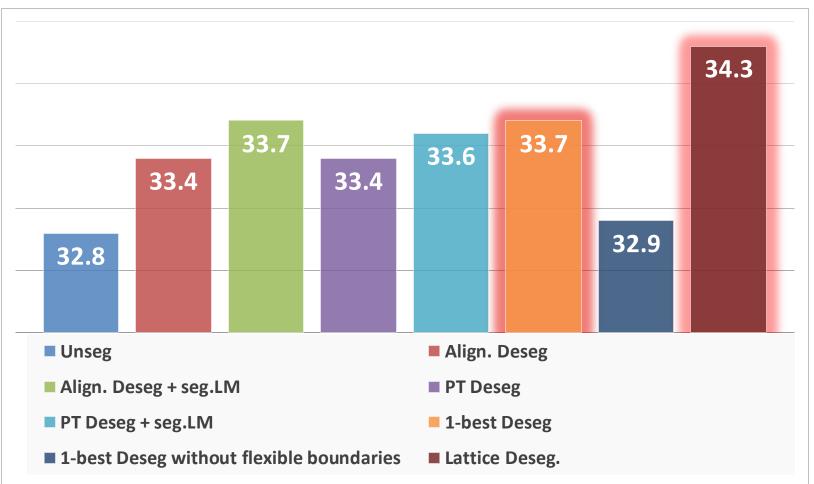
English-Arabic Data

- Train on NIST 2012 training set, excluding the UN data (1.49M sentence pairs)
- Tune on NIST 2004 (1353 pairs) Test on NIST 2005 (1056 pairs)
- Tune on NIST 2006 (1664 pairs) Test on NIST 2008 (1360 pairs) Test on NIST 2009 (1313 pairs)

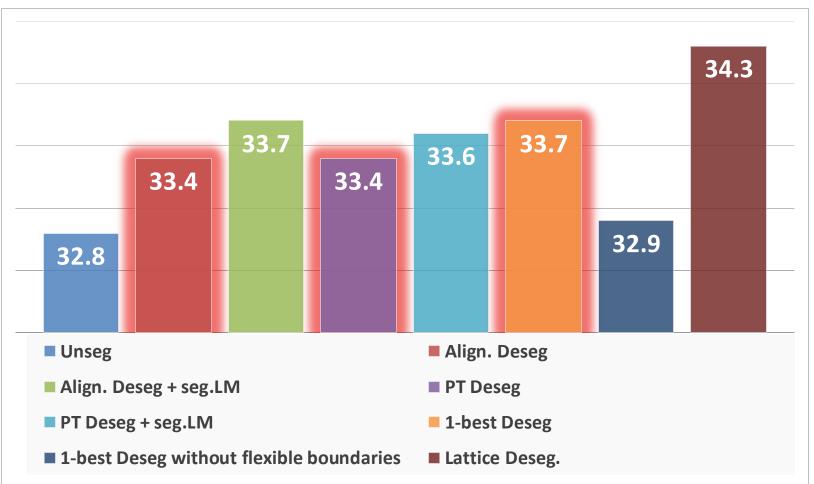
System

- Train a 5-gram Language Model on target side using SRILM
- Align parallel data with GIZA++
- Decode using Moses
- Tune the decoder's log-linear model with MERT
- Reranking Lattice desegmented model is tuned using a batch variant of hope-fear MIRA
- Evaluate the system using BLEU

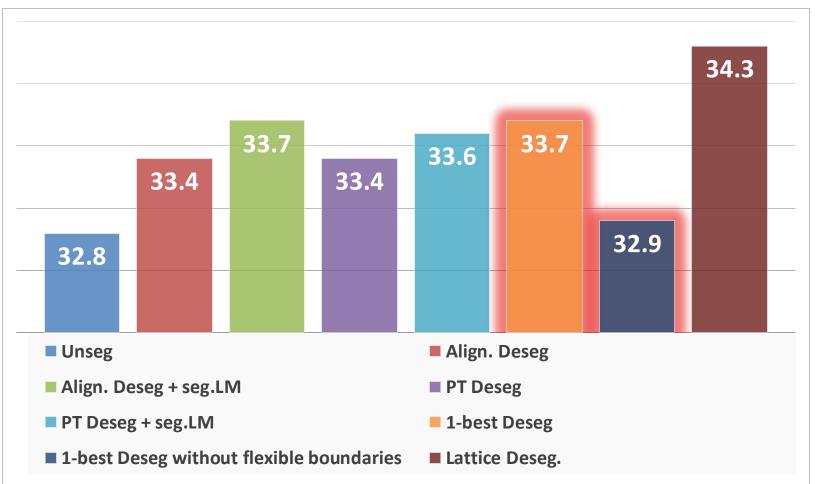




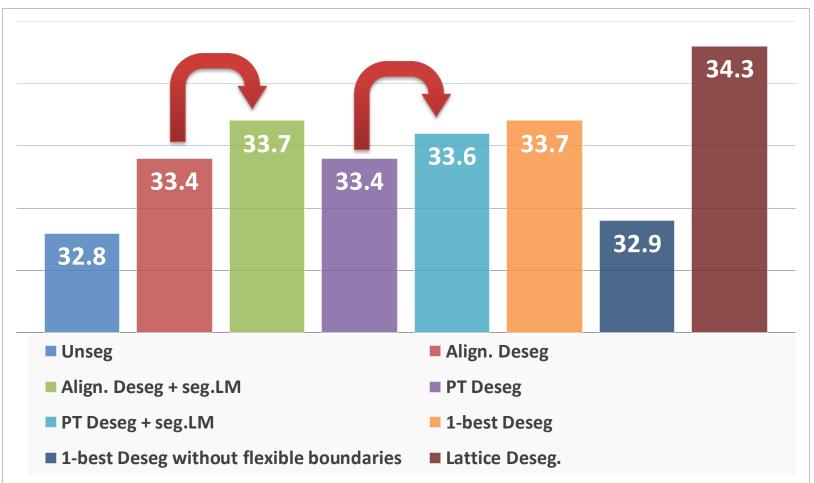
Decoder Integration: lattice desegmentation and 1-best are only systems without access to unsegmented information in the decoder



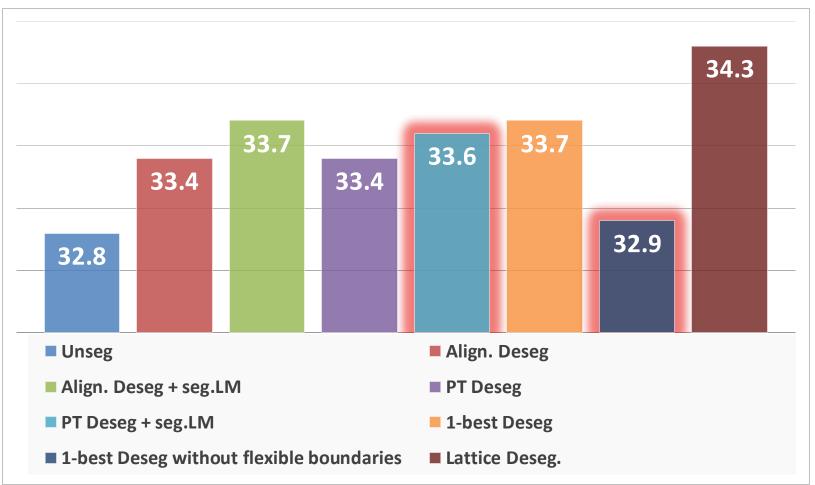
Flexible Boundaries: PT Deseg and Align Deseg. lack flexible phrase boundaries with respect to 1-best Deseg



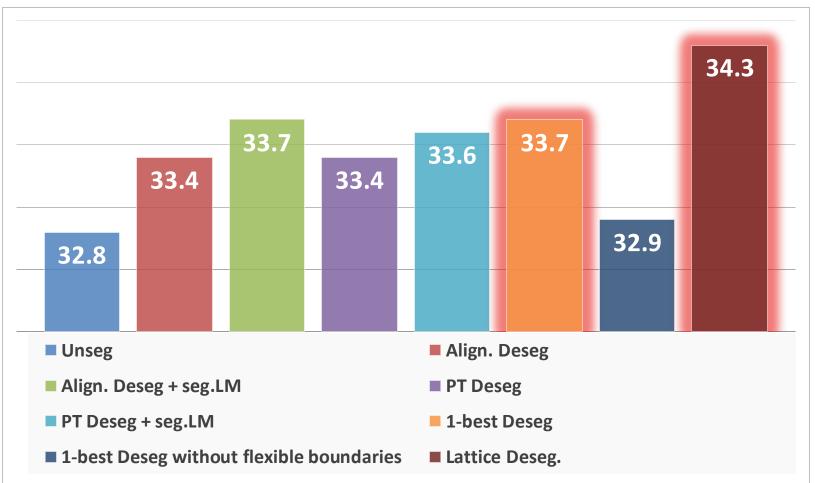
Flexible Boundaries: PT Deseg and Align Deseg. lack flexible phrase boundaries with respect to 1-best Deseg



Language Models: Align Deseg and Phrase Table Deseg show consistent but small, improvements from addition of a segmented LM.



Language Models: Phrase Table Deseg with segmented LM and 1-best Deseg. without flexible boundaries have exactly same output space.



Language Models: main difference between 1-best Deseg. and Lattice Deseg. Is the unsegmented LM and discontiguity features.

Analysis

- **1.** Flexible boundaries
 - Constitute 12% of phrases in final output of 1-best-deseg
 - Novel words: 3% of the desegmented types
 - Randomly selected 40 out of each set:
 - 64/120 violates morphological rules
 - 37/115 novel words from the reference could be constructed from morphemes
- 2. Impact of *ngram* order for segmented LM
 - No improvement seen over 5-gram LM with 6, 7 and 8-grams
- 3. Overall affix usage

Overall affix usage

Model	mt05	mt08	mt09
Reference	15.9	18.1	18.9
Unsegmented	12.0	12.2	12.6
Alignment Deseg.	11.6	11.0	11.8
with Segmented LM	11.7	11.2	12.0
Phrase Table Deseg.	11.3	10.1	11.2
with Segmented LM	11.6	10.5	11.4
1-best Deseg.	16.1	18.2	19.2
without flexible boundaries	14.2	14.7	15.4
Lattice Deseg.	10.0	11.5	12.2

Percentage of words in SMT output that have non-identity morphological segmentation

Overall affix usage

Model	mt05	mt08	mt09
Reference	15.9	18.1	18.9
Unsegmented	12.0	12.2	12.6
Alignment Deseg.	11.6	11.0	11.8
with Segmented LM	11.7	11.2	12.0
Phrase Table Deseg.	11.3	10.1	11.2
with Segmented LM	11.6	10.5	11.4
1-best Deseg.	16.1	18.2	19.2
without flexible boundaries	14.2	14.7	15.4
Lattice Deseg.	10.0	11.5	12.2

Percentage of words in SMT output that have non-identity morphological segmentation

Conclusion

- Presented experimental study on translation into segmented language by creating models that apply desegmentation at different points.
- *Flexible boundaries* are the most important factor in improving translation in segmented models
- Although unsegmented LMs improve BLEU score, they hinder generation of morphologically complex words

Thank You