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ABSTRACT

We contrast two opposing approaches to building bots that
autonomously learn to rap battle: a symbolic probabilistic
approach based on induction of stochastic transduction gram-
mars, versus a neural network approach based on backprop-
agation through unconventional transduction recursive auto-
associative memory (TRAAM) models. Rap battling is mod-
eled as a quasi-translation problem, in which an appropri-
ate output response must be improvised given any input chal-
lenge line of lyrics. Both approaches attempt to tackle the
difficult problem of compositionality: for any challenge line,
constructing a good response requires making salient associ-
ations while satisfying contextual preferences at many differ-
ent, overlapping levels of granularity between the challenge
and response lines. The contextual preferences include flu-
ency, partial metrical or syntactic parallelism, and rhyming
at various points across the lines. During both the learning
and improvisation stages, the symbolic approach attempts to
explicitly enumerate as many hypotheses as possible, whereas
the neural approach attempts to evolve vector representations
that better implicitly generalize over soft regions or neighbor-
hoods of hypotheses. The brute force symbolic approach is
more precise, but quickly generates combinatorial numbers
of hypotheses when searching for generalizations. The dis-
tributed vector based neural approach can more easily con-
fuse hypotheses, but maintains a constant level of complexity
while retaining its implicit generalization bias. We contrast
both the theoretical formulation and experimental outputs of
the two approaches.

1. INTRODUCTION

Despite its status as one of the most influential developments
in the recent history of music, rap and hip hop remains sur-
prisingly underexplored in computer music. This may be as-
cribed in part to the extraordinary level of difficulty of the
tasks involved in rapping. Perhaps the most difficult form of
this genre is rap battling, in which a rapper must improvise

Copyright: (©2015 Dekai Wu et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

Karteek Addanki
Human Language Technology Center
Department of Computer Science
Hong Kong University of Science and Technology
dekai@cs.ust.hk

on-the-fly responses to any challenge rap issued by another
rapper.

Consider the many complex factors a rapper must integrate
in constructing line 2 as a response, if given the line 1 as
a challenge, in the following raps drawn from “The Magic
Number” by De La Soul:

1: focus is formed by flaunts to the soul, souls who flaunt
styles gain praises by pounds

2: common are speakers who are never scrolls, scrolls written
daily creates a new sound

Some of the many complex factors the rapper would face:

e the response line should somehow be salient to the chal-
lenge line

e some phrases within the response line can somehow be
salient to correspomding phrases within the challenge
line—e.g., ‘focus is formed by flaunts to the soul’ is
salient to ‘common are speakers who are never scrolls’

e some individual words within the response line can some-
how be salient to correspomding words within the chal-
lenge line—e.g., ‘is’ is salient to ‘are’, and ‘who flaunt
styles’ is salient in a different way to ‘written daily’

e the response line should flow fluently (yet sometimes
may allow for stylistic ungrammaticality, disfluencies
such as stuttering, or slang constructs)

e some phrases within the response line can use metrical
parallelism to corresponding phrases within the chal-
lenge line—e.g., ‘scrolls written daily creates a new
sound’ has a close meter to ‘souls who flaunt styles
gain praises by pounds’

e some phrases within the response line can use syntactic
parallelism to corresponding phrases within the chal-
lenge line—e.g., ‘focus is ...” is syntactically parallel to
‘common are ...

o the response line should typically rhyme with the chal-
lenge line—e.g., ‘pounds’ rhymes with ‘sound’

e some words or phrases within the response line may
also be made to thyme with the challenge line—e.g.,
‘soul’ thymes with ‘scrolls’, and ‘gain praises’ rhymes
with ‘creates’
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None of these are hard and fast rules or constraints; rather,
all the factors are merely soft biases or preferences. More-
over, each choice influences the other choices that need to be
made. The combinatorial context dependencies that thus arise
make computational complexity a severe issue for automatic
improvisation of rap responses.

To model the relationships between the challenge and re-
sponse at all these various levels of granularity, it is neces-
sary to take all the associated fragments of the two lines, and
compose them hierarchically into the full challenge-response
pair of lines. This gives a compositional relationship that can
be thought of as a tree whose leaves are the individual words
or phrases associated with each other by dint of salience, syn-
tactic function, or rhyme, and whose internal nodes are pro-
gressively longer compositions of the shorter chunks:

[ [[ ‘focus’/‘common’

[ ‘is’/‘are’

[ [ ‘formed by flaunts’/‘speakers’ ‘to the’/*who are never’ ]
‘soul’/‘scrolls’ ] ]]

L

[ [ ‘souls’/‘scrolls’

‘who flaunt styles’/written daily’ ]

[ ‘gain praises’/‘creates’

[ ‘by’/*anew’ ‘pounds’/‘sound’ ]]] ]

Such trees are highly remniscent of bilingual parse trees (or
biparse trees) in machine translation. We can think of rap
battle improvisation as a quasi-translation task in which chal-
lenges are “translated” into responses—not translation in the
conventional sense, but still, a task of relating one’s response
to any given challenge.

Computational complexity, as mentioned, is a major issue
for rap battle improvisation algorithms. But it becomes an
even more challenging problem for the task of automatically
learning the improvisation model, in ways that learn the im-
portant abstractions and generalizations. We contrast in this
paper two very different approaches to tackling the complex-
ity issues in learning compositional models for rap battle bots:
traditional symbolic approaches based on (a) probabilistic in-
duction of stochastic transduction grammars, versus (b) neu-
ral network approaches based on backpropagation training of
transduction recursive auto-associative memories. We con-
trast these two approaches in terms of, in turn, their represen-
tation, learning, improvisation, and empirical aspects.

2. SYMBOLIC VS. NEURAL COMPOSITIONAL
REPRESENTATIONS

2.1 Symbolic transduction grammar representations

The symbolic rap battle learning approach introduced by Wu
et al.[1] explicitly represents individual bilingual parse trees
like the one above, using stochastic versions of the syntax
directed transduction grammars (SDTGs) of classic formal
language theory [2]. The model restricts induction to the sub-
class of SDTGs known as inversion transduction grammars or
ITGs [3], for which polynomial time learning and prediction
algorithms exist (unlike SDTGs), and yet which have been

empirically demonstrated to possess attractive language uni-
versal properties for machine translation [4].

Rules (and instances of rules) represent structured correla-
tions between the input challenge language and output re-
sponse language. Formally, an ITG is a tuple (N, X, A, R, S),
where N is a finite nonempty set of nonterminal symbols, X is
a finite set of terminal symbols in Ly (output language), A is
a finite set of terminal symbols in L; (input language), R is a
finite nonempty set of inversion transduction rules and S € N
is a designated start symbol. A normal-form ITG consists of
rules in one of the following four forms:

S—A,A—[BC],A— (BC),A—e/f

where S € N is the start symbol, A, B,C € N are nonter-
minal symbols and e/f is a biterminal. A biterminal is a pair
of symbol strings: ¥* x A*, where at least one of the strings
has to be nonempty. The square and angled brackets signal
straight and inverted order respectively. With straight order,
both the L and the L1 productions are generated left-to-right,
but with inverted order, the L; production is generated right-
to-left.

Given a pair of input and output sentences e, ..., er and
f1,--., fv respectively, an ITG generates a biparse tree by
recursively combining smaller bispans (chunks of aligned in-
put and output segments) into larger bispans using the syn-
tactic rules in straight or inverted order. Each bispan corre-
sponds to at least one nonterminal and is represented using a
4-tuple s, t, u, v which corresponds to the input segment with
tokens eg,es41,...,¢e; and the output segment with tokens
fuv fu+1a R fv~

In this symbolic approach, sets of biparse trees are repre-
sented explicitly as well, but for efficiency, tabular and hyper-
graph data structures are used wherever possible to compress
the storage of biparse trees that share subtrees (commonly re-
ferred to as charts or packed forests). Even so, because of the
large number of choices at each level of granularity, it is still
impractical to store anywhere near an exhaustive catalog of
improvisation hypotheses.

2.2 Neural transduction RAAM vector representations

An alternative approach that aims to reduce the need to ex-
plicitly represent enormous numbers of similar competing hy-
potheses is to instead represent rap battle improvisation hy-
potheses using fixed-dimensionality continuous vectors, em-
ploying the new TRAAM (transduction RAAM) model of
machine translation proposed by Addanki and Wu [5]. The

distributed vector representations in TRAAM attempt to roughly

parallel the structural composition of a syntax directed trans-
duction grammar. However, unlike symbolic transduction
grammar based representations, the continuous vector rep-
resentations in effect represent soft neighborhoods of cross-

lingual associations. TRAAM implicitly learns context-sensitive

generalizations over the structural relationships, between the
corresponding parts of the challenges and responses across all
levels of granularity, while avoiding incurring the symbolic
models’ exponential cost of modeling context sensitivity.
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Figure 1. Correspondence between a symbolic biparse tree (lower) and
TRAAM neural network (upper).

More formally, TRAAM is a bilingual generalization of the
way that the RAAM (recursive autoassociative memory model)
of Pollack [6] monolingually approximates context-free gram-
mars. In TRAAM’s distributed representation of an ITG, each
bispan s, t,u, v is represented using a feature vector vy, of
dimension dwhich represents a fuzzy encoding of all the non-
terminals that could generate the bispan. This stands in con-
trast to the symbolic ITG where each nonterminal that gen-
erates the bispan must be enumerated separately. As with
symbolic ITGs, vectors corresponding to larger bispans are
recursively generated from the vectors representing smaller
bispans, but in TRAAM this is done using a compressor net-
work. The compressor network takes two vectors of dimen-
sion d, along with a single bit corresponding to straight or in-
verted order, and outputs a vector of dimension d—essentially
compressing an input of 2d + 1 dimensions to a vector of di-
mension d.

The role of the compressor network is analogous to the trans-
duction rules in the ITG model, but with the important dis-
tinction of (1) keeping the encoding fuzzy, and (2) forcing

generalization over similar vectors in the Euclidean space neigh-

borhood. Figure 1 visualizes how transduction rule instances
(both straight and inverted) correspond to inputs to the com-
pressor network. Each nonterminal in an ITG can be encoded
as a bit vector, identical to the vector of the bispan in our
model. Using the universal approximation theorem of neu-
ral networks [7], an encoder with a single hidden layer can
represent any set of transduction rules. Conversely, any vari-
ant of our model can be represented as an ITG by assum-
ing a unique nonterminal label for the feature vector corre-
sponding to each bispan. Hence, symbolic ITGs and neural
TRAAMs represent two ways to model compositional bilin-
gual relations. TRAAM’s neural encoding of nonterminals is
better suited for modeling generalizations over bilingual re-
lations without exploding the search space, while symbolic
ITG representations avoid potential confusions due to acci-
dental similarities between vectors.

3. SYMBOLIC VS. NEURAL RAP BATTLES

We now discuss runs of the symbolic versus neural mod-
els on actual data. Freely available user generated hip hop
lyrics from the Internet were used as training data for our ex-
periments. After minor preprocessing, the corpus contained
22 million tokens, comprising 260,000 verses, or 2.7 million

Table 1. Percentage of acceptable (i.e., either good or acceptable) responses
on fluency and rhyming criteria.

model fluency (acceptable) | rhyming (acceptable)
PBSMT | 43.53% 9.02%
BNN 83.13% 56.62%

lines. As human evaluation using expert hip hop listeners is
expensive, a small subset of 85 lines was chosen as the test set
to provide challenges for comparing the quality of responses
generated by different systems.

3.1 Bilingual recursive neural network model

We use the bilingual recursive neural network model discussed
earlier along with a token based transduction grammar model
trained on around 200,000 lines of challenge response pairs.
The challenge response pairs were selected using a rhyme
scheme detection module proposed in Addanki and Wu [8].
We use the translation lexicon from the trained transduction
grammar and use that along with the biparses to train our neu-
ral network model. Both these models are then used to impro-
vise the responses using a 4-gram language model which was
trained on the entire training corpus using SRILM [9]. The
weights of the feature scores were determined empirically
observing the performance on a small subset of the training
data. In order to evaluate the performance of an out-of-the-
box phrase-based SMT (PBSMT) system toward this novel
task of generating thyming and fluent responses, a standard
Moses baseline [10] was also trained in order to compare its
performance with our transduction grammar induction model.

3.2 Phrase-based SMT baseline performs poorly

Table 1 shows the average fraction of sentences rated good
and acceptable for each model. Our bilingual neural net-
work based model produces significantly higher percentage
of good and acceptable thyming responses compared to the
phrase-based SMT (PBSMT) baseline. It is surprising that
despite being a token based model, our model outperforms
the segmental PBSMT model even on the criterion of fluency.
These results indicate that our bilingual neural network model
captures enough context to generate fluent responses, signifi-
cantly augmenting the performance of a token based model.

3.3 Challenge-response examples

Table 2 shows some of the challenges and the correspond-
ing responses of our model and the PBSMT baseline. It is
interesting to note that our model produces responses compa-
rable in fluency to PBSMT despite being a token based trans-
duction grammar. However, PBSMT models tend to produce
responses that are too similar to the challenge compared to
the our model which improvise responses that rhyme better
(shown in boldface). In fact our model frequently produces
responses that thyme words not only at the end but also in the
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Table 2. Examples of challenges and responses generated by each of the
models.

challenge | and dold guns on the block

TRAAM | they like me in my rock

PBSMT and on the block

challenge | you can call me lil meeno

TRAAM | thisis all i get left

PBSMT you can call me

challenge | everybody trying to be pretty don’t care for nitty gritty
TRAAM | that boy in the city you there to act nitty
PBSMT to be pretty just for

challenge | faith is a red rose is a red rose

TRAAM | allin they head somethin to the head somethin
PBSMT isaisa

challenge | now we're onto Ip number 2 on tour

TRAAM | but we worry perfection call 1 in more
PBSMT now we on

middle of challenges as our transduction grammar model cap-
tures structural associations more effectively than the phrase-
based model.

4. CONCLUSION AND FUTURE DIRECTIONS

Teaching machines to rap battle is a quest that encapsulates
numerous interacting levels of improvisational artistry in a
complex, structured Al learning challenge. We have described
an unconventional line of attack in which a recursive bilingual
neural network sidesteps the exponentially complex hypothe-
sis space needed by existing suitable symbolic learning mod-
els for both the improvisational response generation search
and the model learning search, by instead using composi-
tional distributed vector representations in which a single vec-
tor implicitly represents an entire neighborhood of multiple
similar association patterns between corresponding structural
aspects of challenges and responses. The fact that challenge-
response association patterns that are structurally similar tend
to have similar vectors allows training to learn soft, context-
sensitive generalizations over all kinds of structural challenge-
response associations patterns, from concrete to abstract pat-
terns, and from short to long patterns.

Our approach is unlike conventional approaches to poetry in
being completely unsupervised, making zero use of any lin-
guistic or phonetic features in spite of an extremely unstruc-
tured and noisy domain. Modeling improvisation as a quasi-
translation learning problem means that for any challenge,
the machine must learn on its own what kinds of improvised
responses would be fluent, salient, rhyming, and of similar
metrical and syntactic structure. The distributed feature vec-
tors that encode challenge-response association patterns are
learned simultaneously by our recursive bilingual neural net-
work, using context from both the challenge and the response.
The soft structural relationships learned are used to improve
the probabilistic responses generated by our improvisational
response component, as judged by human rap listeners.
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