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Abstract
We attack an inexplicably under-explored language genre of
spoken language—lyrics in music—via completely unsuper-
vised induction of an SMT-style stochastic transduction gram-
mar for hip hop lyrics, yielding a fully-automatically learned
challenge-response system that produces rhyming lyrics given
an input. Unlike previous efforts, we choose the domain of hip
hop lyrics, which is particularly unstructured and noisy. A novel
feature of our approach is that it is completely unsupervised and
requires no a priori linguistic or phonetic knowledge. In spite of
the level of difficulty of the challenge, the model nevertheless
produces fluent output as judged by human evaluators, and per-
forms significantly better than widely used phrase-based SMT
models upon the same task.
Index Terms: statistical machine translation, lyrics transla-
tion, stochastic transduction grammars, unsupervised grammar
induction

1. Introduction
Among themany genres of language that have been studied in

computational linguistics and spoken language processing, there
has been a dearth of work on lyrics in music, despite the major
impact that this form of language has across almost all human
cultures. We aim to spur research addressing this gap, by bring-
ing modern statistical language technologies to bear upon mod-
eling issues in song lyrics. An ideal starting point for this inves-
tigation is hip hop, a genre of music that emphasizes rapping,
spoken or chanted rhyming lyrics against strong beats or simple
melodies. This complex domain presents a fertile range of chal-
lenges for learning since there is typically no obvious structure
in terms of rhyme scheme, meter, or overall meaning.
We argue that statistical machine translation’s rich tools for

unsupervised learning of stochastic transduction grammars are
ideal for representing structural relationships between lines of
lyrics. We describe Freestyle, a new fully-automatically
learned challenge-response system that learns to improvise a
rhyming response given any input challenge line—with no
prior phonetic or linguistic knowledge whatsoever. Instead, the
model induces an SMT-style stochastic transduction grammar
that “translates” from a challenge line to a rhyming response.
The method is completely unsupervised, despite the highly un-
structured and noisy domain.
The domain of hip hop lyrics is particularly unstructured

when compared to classical poetry, a domain on which statis-
tical methods have been applied in the past. Hip hop lyrics are
unstructured in the sense that a very high degree of variation is
permitted in the meter of the lyrics, and large amounts of col-

loquial vocabulary and slang from the subculture are employed.
The variance in the permitted meter makes it hard to make any
assumptions about the stress patterns of verses in order to iden-
tify the rhyming words used when generating output. The broad
range of unorthodox vocabulary used in hip hop make it diffi-
cult to use off-the-shelf NLP tools for doing phonological and/or
morphological analysis. These problems are further exacerbated
by differences in intonation of the same word and lack of robust
transcription [1].
To gauge the performance of traditional SMT approaches on

this novel domain and task, we also contrast the performance
of our model against a conventional, widely used phrase-based
SMT model. We briefly describe a novel unsupervised rhyme
scheme detection algorithm which generates the training data
for our model from a corpus of hip hop lyrics. We also highlight
some of the issues that result from disfluencies and chorus lyrics
in the data which are characteristic to hip hop lyrics.
A brief terminological note: “stanza” and “verse” are fre-

quently confused and sometimes conflated. Worse yet, their us-
age for song lyrics is often contradictory to that for poetry. To
avoid ambiguity we consistently follow these technical defini-
tions for segments in decreasing size of granularity:
verse a large unit of a song’s lyrics. A song typically contains

several verses interspersed with choruses. In the present
work, we do not differentiate choruses from verses. In
song lyrics, a verse is most commonly represented as a
separate paragraph.

stanza a segment within a verse which has a meter and rhyme
scheme. Stanzas often consist of 2, 3, or 4 lines, but stan-
zas of more lines are also common. Particularly in hip hop,
a single verse often contains many stanzas with different
rhyme schemes and meters.

line a segment within a stanza consisting of a single line. In
poetry, strictly speaking this would be called a “verse”,
which however conflicts with the conventional use of
“verse” in song lyrics.

In Section 2, we discuss some of the previous work that ap-
plies statistical methods to similar problems. We then describe
our system and the experimental setup in Sections 3 and 4. Re-
sults and conclusions are presented in Sections 5 and 6.

2. Related work
Ours is the first known work on this domain, although simi-

lar work has been done in the past on more structured domains
such as poetry. Flat phrase-based SMT has been used to model
the two lines of a Chinese couplet or duilian [2]. In that work,
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an SMT system was trained to translate the first line of the cou-
plet into the second. An n best list was generated for each test
input, and then linguistic constraints were applied to select the
most suitable next line. In contrast to Chinese couplets, which
adhere to strict rules requiring, for example, an identical num-
ber of characters in each line and one-to-one correspondence in
their metrical length, the domain of hip hop lyrics is far more un-
structured and there exists no clear constraint that would ensure
good responses to challenge lines.
Other previous works have attempted to identify word-to-

word relationships, stress patterns [3] and rhyming words [4],
mostly in the domain of poetry. In some cases, the learned re-
sults were combined with language models to generate new po-
ems [3, 5, 2]. Most of this vein of past work can be classified into
two categories. The first category uses some form of prior lin-
guistic knowledge about the domain, such as pronunciation dic-
tionaries [5] or phonological or morphological information. The
second category uses unsupervised learning methods to identify
word association probabilities but enforces harsher constraints
warranted by the domain, such as a set number of words in a line,
or a set meter. Our new work differs in the sense that we present
a completely unsupervised model on a domain that inherently
has very few such constraints. For example, not all words in
the lyrics are a part of the lexicon. Hip hop does not require
a set number of syllables in a line, unlike poems (especially in
classical poetry where, for example, an octave has exactly 10
syllables per line and 8 lines per stanza). Also, surprising and
unlikely rhymes in hip hop are frequently achieved via intona-
tion and assonance, making it hard to apply prior phonological
constraints. We present a brief summary of related work below.
The stress pattens of words in English rhythmic poetries were

analyzed by [3]. Their task was to assign stress patterns to words
where the meter of each line is known. Ameter is the beat that is
heard when the poem is read aloud. For example, the common
iambicmeter follows a da-DUM da-DUM da-DUM pattern. An
FST was applied to all the words in Shakespeare’s sonnets to
assign probable stress patterns. Combining stress patterns with
a language model for fluency, a poem was generated.
In [5], SMT was used in conjunction with stress patterns and

rhymes found in a pronunciation dictionary to produce trans-
lations of poems. Although many constraints were applied in
translating full verses of poems, it was challenging to satisfy all
the constraints. For example, some words rhymed but could not
comply with the desired meter of the line. This illustrates the
extent of the challenge faced by automatic methods to produce
quality output even for very structured domains.
Graph theory was applied to analyze the rhyming and there-

fore inferred the pronunciation of words in old poetry for an
English rhyming corpus by [6]. The pronunciations are repre-
sented by the International Phonetic Alphabet (IPA) symbols.
Two words were assumed to rhyme when their IPA symbols
ended similarly. The rhyming words were organized into rhyme
graphs where the nodes were words and edges were rhymes.
However, this method gave large clusters of words that have
the same IPA endings but do not fully rhyme, such as bloom and
numb. Their method also introduced partitions on the graphs to
obtain better results.
Automatic lyric generation given melodies was also investi-

gated by [7]. The training data included melodies and accom-
panied lyrics, where the lyrics were represented using the KNM
system, where K, N and M represented the long vowels, short
vowels and consonants respectively. The trained model was
then used to label any input melody with the KNM system. Sec-
ondly, words were chosen to fit the KNM system of the lyrics

and constraints were applied for enforcing fluency.

3. System description
In this section, we describe our model for learning to generate

a response to any given challenge (i.e., a line of a hip hop verse)
that is fluent and rhymes with the challenge. We describe how
the training data is selected using unsupervised rhyme scheme
detection in Section 3.1. The unsupervised induction of our
transduction grammar is described in 3.2 and Section 3.3 dis-
cusses our decoding algorithm.

3.1. Data selection: Rhyme scheme detection

Our approach adapts an SMT approach toward the problem
of generating fluent and rhyming lyrics. However, unlike the
approach used by [2], we could not train an SMT system on
all the successive lines of the verses in the corpus, given the
noisy nature of our data and differences in the rhyme sequences
amongst the lyrics. In order to select pairs of lines from our
corpus that are likely to rhyme, we employed a rhyme scheme
detection model for hip hop lyrics. Through this data selection
step, we improve the likelihood that the associations learned
during our transduction grammar induction will be more bi-
ased towards producing fluent and rhyming output as opposed to
blindly training on all successive lines. We briefly describe the
rhyme scheme detection model here; for more details see [8].
We use a completely unsupervised HMM model to identify

the lines of a verse that rhyme with each other. A novel fea-
ture of our approach comes from the fact that we do not manu-
ally partition verses into stanzas according to some pre-specified
rhyme scheme but instead use a number of hidden states of vary-
ing length to automatically impose a soft segmentation.
We assume a generative model that stochastically emits a se-

quence of verses. Each verse is composed of many stanzas each
with its own rhyme scheme such as AA, ABAB, AAAA. The
total number of rhyme schemes given a stanza of length n is
the nth Bell number[9] and exhaustively considering the expo-
nential number of partitions is prohibitively expensive and not
very useful. For example, the rhyme scheme ABCDA seems
very unlikely to be a part of any hip hop verse. This is because
long distance rhymes are meaningless as listeners cannot keep
track of more than a few previous lines. Hence, we restricted our
maximum rhyme scheme length to be four. In order to keep the
size of the HMM tractable we only used states for those rhyme
schemes that could not be generated via transitioning through
other states. For example, a rhyme scheme of length 3AAB can
be generated by a sequence of rhyme schemes of length 2 and
1, AA and B respectively. After applying these constraints our
HMM model is fully connected with the following 9 states: A,
AA, ABA, AAA, ABAB, AABA, ABAA, BAAA, AAAA.
We select the training data for our transduction grammar

based SMT model in the next stage by first labeling the cor-
pus with rhyme schemes according to the Viterbi parse. We se-
lect adjacent lines that rhyme with each other (according to the
rhyme scheme label) in the stanza and add them as parallel sen-
tences to the training corpus. As the source and target languages
are identical, each selected pair generates two training instances:
a challenge-response and a response-challenge pair.

3.2. Unsupervised learning: Stochastic transduction gram-
mar induction

We learn a stochastic inversion transduction grammar [10,
11, 12] that attempts to transduce any given challenge into a
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rhyming and fluent response. We choose the framework of in-
version transduction grammars given the significant amount of
empirical evidence for their representational capacity across a
spectrum of natural language tasks such as textual entailment
[13], mining parallel sentences [14] and machine translation
[15, 16]. Restricting to bracketing ITGs encourages the learning
to focus on token level correspondences for the task of identi-
fying potential rhyming candidates. We chose an ITG model
as opposed to a finite-state transduction grammar in order to be
able to identify potential rhyming candidates in the middle of
stanzas as multiple rhyming lines are frequently separated by
commas instead of newlines. To obtain these types of flexibil-
ity, we trade off some of the initial fluency offered by segmental
models.
We induce the bracketing ITG on the corpus generated from

the previous stage to identify the word associations between
rhyming lines. Expectation maximization [17] is used to esti-
mate the model parameters for the bracketing grammar, using
the algorithm for ITG training from [18]. As the corpora are
fairly large, beam pruning is used to make the training faster.
Further details of the transduction grammar induction can be
found in [19, 20, 21, 22, 23].

3.3. Decoding: Challenge-response algorithm

Weuse our in-house ITG decoder for the task of decoding [24,
25]. The decoder uses a CKY-style parsing algorithm [26] with
cube pruning [27]. The decoder builds an efficient hypergraph
structure which is then scored using the induced grammar.
In our decoding algorithm, we restrict the reordering to only

be monotonic as we want to produce output that follows the
same rhyming order of the challenge. Interleaved rhyming or-
der is harder to evaluate without the larger context of the song
and we do not address that problem in our current model. We
also penalize singletons to produce responses of similar length
as successive lines in a stanza are of similar length. Finally, we
add a penalty to reflexive translation rules that map the same
surface form to itself such as A → ”yo”/”yo”. We obtain these
rules with a high probability due to the presence of sentence
pairs where both the input and output are identical strings. This
is becausemany stanzas in our data contain repeated chorus lines
which are labeled to be rhyming (and rightly so) in the rhyme
scheme detection step.

4. Experiments
In the following subsections, we describe our data set, base-

line model and our evaluation scheme for gauging the perfor-
mance of the models.

4.1. Dataset

We exploited the vast amount of user generated hip hop lyrics
available online. For our experiments, we used the lyrics of ap-
proximately 52,000 hip hop songs (about 800MB of raw HTML
content). The data was cleaned by strippingHTML tags, various
metadata (e.g., the artist, song, lines corresponding to a chorus,
beats, etc.) Verses were identified using simple heuristics and
marked up. We then extracted the end-of-line words and words
before all the commas from each verse. We obtained a corpus
containing 260,000 stanzas with 4.2 million tokens (with around
153,000 unique token types). We also normalized for special
characters and case differences, and filtered out any malformed
HTML tags left in the data.

4.2. Phrase-based SMT baseline

We labeled the stanzas in our corpus with rhyme schemes and
extracted a training corpus as described in Section 3.1. We ob-
tained a training corpus of about size 200,000 and trained our
bracketing inversion transduction grammar model. In order to
evaluate the performance of standard SMT alignment and search
strategies on this task we also trained a standard Moses base-
line [28] on the same data and compared the performance of our
model. A 4-gram language model was trained on the training
corpus using SRILM [29] for the purposes of decoding. Both
the baseline and our bracketing ITG model were used to decode
a held out test set with a slightly higher language model weight
which was empirically chosen using a small development set to
produce fluent outputs. The best output of both these models
was used to evaluate the performance of these models on eval-
uating the fluency and the degree of rhyming of the responses
generated.

4.3. Evaluation

We evaluated the performance of rhyme scheme detection
stage of our system on the task of labeling a given verse with
the rhyme schemes. As our model is completely unsupervised,
we chose a random sample of 75 verses from our training data
as our test set. Two native English speakers were asked to an-
notate the stanza with a gold standard rhyme scheme. Precision
and recall were aggregated for the viterbi parse of each verse
against this gold standard and f-score was calculated.
The performance of our bracketing ITGmodel was evaluated

on the task of generating a subsequent line given a single line of
a hip hop verse. We evaluated on a random sample of 85 lines
from the held-out test set data. The output of both the systems
on the test set was given to three independent frequent hip hop
listeners. They were asked to evaluate the system outputs ac-
cording to fluency and the degree of rhyming. They were free
to choose the tune to make the lyrics rhyme as the beats of the
song were not used in the training data. Each was asked to score
system response on the criterion of fluency and rhyming as be-
ing good, acceptable or bad.

5. Results
In this section, we present the results of our system on

the tasks of rhyme scheme labeling and generation of fluent,
rhyming responses given a challenge. We provide some ex-
amples of the responses generated by our approach versus the
phrase-based SMT baseline. We also note the effect of disflu-
encies and backing vocals on our output and compare the per-
formance of two alternative strategies to alleviate the problem.

5.1. Data selection accuracy

On the data selection phase utilizing rhyme scheme labeling,
we obtained a precision of 35.81% and a recall of 57.25%, giv-
ing an f-score of 44.06%. Our model was prone to committing
false positive errors especially for tokens that do not belong to a
stanza which explains the lower precision and higher recall. The
bias of HMM models towards minimizing the number of tran-
sitions resulted in improper segmentation of stanzas, especially
when there was a single line that did not rhyme with any other
line. Despite the false positives, the model serves as a useful
step in the generation of training corpus as opposed to adding
all possible line combinations in a verse to the training data.
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Table 1: Percentage of good and ≥acceptable (i.e., either good or acceptable) responses on fluency and rhyming criteria.

model disfluency strategy fluency (good) fluency (≥acceptable) rhyming (good) rhyming (≥acceptable)
Pbsmt filtering 31.76% 43.91% 12.15% 21.17%
Freestyle filtering 28.63% 56.86% 14.90% 34.51%
Pbsmt correction 30.59% 43.53% 1.96% 9.02%
Freestyle correction 34.12% 60.39% 20.00% 42.74%

5.2. Disfluency filtering vs. disfluency correction

Error analysis of our initial runs showed a disturbingly high
proportion of responses generated by our system that contained
disfluencies with successive repetitions of words such as the and
I. Upon inspection of data we noticed that the training lyrics ac-
tually did contain such disfluencies and backing vocal lines,1
amounting to 10% of our training data. We therefore com-
pared two alternative strategies to tackle this problem. The first
strategy involved filtering out all lines from our training cor-
pus which contained such disfluencies. In the second strategy,
we implemented a disfluency detection and correction algorithm
(for example, the the the, which frequently occurred in the train-
ing corpus, was corrected to simply the). We trained both the
phrase based SMT system (Pbsmt) and our model (Freestyle)
on both the corrected and the filtered versions of the corpora.
The results in Table 1 indicate that the disfluency correction

strategy outperforms the filtering strategy, on both fluency and
rhyming criteria. With disfluency correction, 34.12% of the
generated responses were rated good on average, while the dis-
fluency filtering strategy produced only good responses 28.63%
of the time. This result is not surprising, as harshly pruning the
training corpus causes useful word association information nec-
essary for rhyming to be lost. It would thus be interesting in
future research to investigate the effect of alternative disfluency
correction strategies on the performance of our system.

5.3. Challenge-response results

Table 1 shows the average fraction of sentences rated good
and acceptable for each model and the disfluency correction
strategy used to train the model. Freestyle produces a sig-
nificantly higher percentage of good and acceptable rhyming
responses compared to the standard baseline for both disfluency
filtering and disfluency correction strategies. Also, Freestyle
outperforms Pbsmt on the task of fluency when trained on the
corrected version of the corpus. (Although Freestyle falls be-
hind Pbsmt in generating sentences with a good fluency under
the disfluency filtering strategy, the cumulative fraction of sen-
tences that were labeled good or acceptable is larger compared
to Pbsmt.) These results indicate that conventional Pbsmt ap-
proaches are not very effective on this novel task. We also notice
that with an appropriately chosen data selection scheme, trans-
duction model, and search heuristics, we can achieve signifi-
cantly better results.
Table 2 shows some of the challenges and the corresponding

responses of Pbsmt and Freestyle. Both generate responses
reflecting a high degree of fluency, even though Freestyle
does not use a segmental phrase-based transduction grammar.
However, Pbsmt tends to produce responses that are too similar
to the challenge. Moreover, Freestyle produces responses that
indeed rhyme better (shown in boldface). In fact, Freestyle
tries to rhyme words not only at the end but also in middle of

1Particularly the repetitive chants, exclamations, and interjections in
hip hop “hype man” style backing vocals.

Table 2: Examples of challenges and responses.

challenge man i die to see em all thun i just don't care
Freestyle in the sky and me the in polla and the you there
Pbsmt man i live to see em all i just don't care
challenge did a twelve year bid in the streets and held it down
Freestyle to the girls here kid the and to the thought the now
Pbsmt did a year in the streets and it down
challenge oh i believe in yesterday
Freestyle can you see the day
Pbsmt oh i believe in tomorrow
challenge what would i do
Freestyle just me and you
Pbsmt what would you do
challenge cause you ain't going home till the early morn
Freestyle and the you this alone i i gotta on
Pbsmt cause you and your friends aint nothing but

the lines, as our transduction grammar model captures structural
associations more effectively than the phrase-based model.

6. Conclusions

We have presented the first known fully-automatically
learned challenge-response system to produce rhyming hip hop
lyrics using no prior phonetic or linguistic knowledge, rely-
ing instead on completely unsupervised induction of an SMT-
style stochastic transduction grammar. We compared the per-
formance of our system against the widely used phrase-based
SMT model and demonstrated that conventional Pbsmt algo-
rithms fall short in tackling the noisy and highly unstructured
domain of hip hop lyrics. We also identified some of the prob-
lems resulting from disfluencies and backing vocals, which are
characteristic to the domain of song lyrics. We plan follow-on
investigation into training data selection, disfluency handling,
search heuristics, and novel transduction models to further im-
prove performance.
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