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Abstract
We introduce a new type of transduction grammar that allows
for learning of probabilistic phrasal bilexica, leading to a sig-
nificant improvement in spoken language translation accuracy.
The current state-of-the-art in statistical machine translation re-
lies on a complicated and crude pipeline to learn probabilis-
tic phrasal bilexica—the very core of any speech translation
system. In this paper, we present a more principled approach
to learning probabilistic phrasal bilexica, based on stochastic
transduction grammar learning applicable to speech corpora.
Index Terms: speech translation, transduction theory, lexicon
extraction

1. Introduction
In this paper, we introduce a novel type of transduction
grammar—the declarative form of a transducer—that improves
translation on a speech translation task. The aim of the paper
is to show that it is possible to replace the long and compli-
cated pipeline that turns a parallel spoken language corpus into
a phrasal bilexicon, with a theoretically principled, grammar
based approach. The ultimate aim, towards which this paper is
a step, is to eliminate the mismatch between learning and trans-
lation that plagues the speech translation systems of today.

When phrase-based speech translation systems replaced the
token-based, a significant boost to translation quality was expe-
rienced. Rather than having to rely on broad generalizations,
the system simply memorizes chunks and their translation. The
degrees of freedom to make errors are thus severely restricted,
making the system more accurate at the cost of storing huge
amounts of fixed chunks. Since a surface-based system has no
mechanism for generalizing in a systematic way, this is a good
work-around.

Although structured speech translation systems are capable
of making generalizations beyond the scope of surface-based
systems, it is also imperative to be able to handle chunks. This is
the correct way to capture phenomena such as figures of speech,
whose translations go beyond the valid generalizations of the
language. However, distinguishing between pairs of phrases
that can be handled by generalization and the ones that can-
not, is a hard problem. Naı̈vely enumerating all possible phrase
pairs found in a parallel speech corpus and determine their prob-
ability by relative frequency, is doomed to fail because of the
sheer amount of possible phrase pairs. The same is true for
constructing transduction grammars with phrase pairs as termi-
nals: the size of the grammar makes it impossible to handle.
Indeed, transduction grammars (and thus transducers) are gen-
erally, but erroneously, perceived as being restricted to handle

single-token terminals.
In this paper, we introduce a method for iteratively extend-

ing single token terminals to multi-token terminals. Rather than
collecting all terminal pairs that could occur in the training cor-
pus, we are collecting only those that could occur in a valid
parse tree in the corpus (according to the grammar we have in-
duced so far). We thus start by inducing a transduction grammar
based on single-token terminals directly from the corpus using
expectation-maximization (EM). When it has stabilized, we col-
lect all adjacent emissions from the parse forest of the corpus,
and add these larger emissions to the grammar. By repeating
the process, larger and larger terminals can be incorporated into
the grammar.

Since induction of transduction grammars is very time con-
suming, we opt to view the corpus as a linear transduction
[1, 2]. This assumption allows us to use something that is
equivalent to linear transduction grammars (LTGs), which can
approximate the search for a parse forest given a sentence pair
in linear time. LTGs do not, however, have an explicit concept
of pairs of terminals, making it non-trivial to map the grammar
to a probabilistic bilexicon. To fix this, we introduce pretermi-
nalized linear inversion transduction grammars (PLITGs), which
will allow the desired parameterization.

Learning a stochastic PLITG from a corpus is equivalent to
building a probabilistic bilexicon based on this corpus. Iter-
atively extending the biterminals of the grammar makes them
phrasal, giving us a probabilistic phrasal bilexicon. This con-
stitutes the key component of a standard speech translation sys-
tem, allowing for easy comparison.

We will start with a review of the transduction grammar
formalism of interest (Section 2), then focus on the particu-
lar stochastic phrasal formalism used in this paper (stochastic
phrasal preterminalized linear inversion transduction grammars,
Section 3). After the theoretical base has been established we
will describe how we use these grammars to extract bilingual
lexica (Section 4). To support our claims, we set up a series of
experiments, described in Section 5, for which the results are
given in Section 6. Finally, we offer some concluding remarks
in Section 7.

2. Transduction Grammars
Transduction grammars are the grammar form of transducers,
providing a more declarative view of the relation defined be-
tween the input and output languages of a transducer. We will
refer to this pairing of two languages as a transduction. A trans-
duction grammar is a grammar that can rewrite its start sym-
bol to any and all string pairs for which the relation defined
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holds. As with languages, there is a hierarchy of transductions
of different expressivity. In this paper we will focus on a class
of transductions that lie strictly between finite-state transduc-
tions and inversion transductions [3], called linear transductions
[2]. There has been two different grammar formalism described
that both generate the class of linear transductions: linear inver-
sion transduction grammars (LITGs) [1] and linear transduction
grammars (LTGs) [2]. In this paper we introduce a third one
termed preterminalized linear inversion transduction grammars
(PLITGs). The advantage of this new type of grammars becomes
clear when moving into the stochastic domain, as they allow all
terminal productions to be included in a single probability dis-
tribution.

Inversion transduction grammars (ITGs) [3] model the sim-
plest kind of relation between context-free languages that allow
for reordering. Allowing for reordering is imperative for utter-
ance level translation between natural languages.

Definition 1. An ITG in normal form over languagesL1 andL2

is a tuple G = 〈N,Σ,∆, S,R〉 where N is a finite nonempty
set of nonterminal symbols, Σ is a finite nonempty set of L1

symbols, ∆ is a finite nonempty set of L2 symbols, S ∈ N is
the start symbol, and R is a finite, nonempty set of inversion
transduction rules on the forms:

A→ [BC], A→ 〈BC〉, A→ a/x

where A,B,C ∈ N , a ∈ Σ ∪ {ε} and x ∈ ∆ ∪ {ε}, with ε
being the empty string.

Productions enclosed in square brackets are read left-to-
right in both languages, whereas productions enclosed in angled
brackets are read left-to-right in L1 and right-to-left in L2. This
simple reordering capacity is remarkably powerful, while still
retaining the possibility of a two-normal form. The two-normal
form is imperative for computational tractability—without it,
parsing an utterance pair requires O(n2n+2) time, whereas the
presence of the two-normal form allows for parsing in O(n6)
time. Although tractable, it is still not practical for large collec-
tions of long utterances.

An LITG is an ITG that has been subjected to a linearity
constraint, so each rule may rewrite a nonterminal symbol to
either a nonterminal symbol and a pair of terminal strings, or
to a pair of empty strings (ε). A pair of strings is denoted a/x
(where a is taken from the input language and x from the output
language), and referred to as a biterminal. If either a or x is the
empty string, the biterminal is called a singleton, and if both are
the empty string, we call it the empty biterminal.

Definition 2. An LITG over languages L1 and L2 is a tuple
G = 〈N,Σ,∆, S,R〉 where N , Σ, ∆ and S are the same as
for ITGs and R is a set of linear inversion transduction rules on
the forms:

A→ [a/x B], A→ 〈a/x B〉, A→ ε/ε,

A→ [B a/x], A→ 〈B a/x〉,
A→ [a/ε B], A→ 〈a/ε B〉,
A→ [ε/x B], A→ 〈B ε/x〉,
A→ [B a/ε], A→ 〈B a/ε〉,
A→ [B ε/x], A→ 〈ε/x B〉

where A,B ∈ N , a ∈ Σ+ and x ∈ ∆+.

(a) Without singletons (b) With singletons

Figure 1: The eight unique moves an LITG can make while
producing terminal symbols. The singleton moves (b) can be
made equivalently with inverting rules, instead of the displayed
straight rules.

Note that the rules generating singletons are pair wise
equivalent, meaning that, for every straight rule generating a
singleton, there is an inverted rule generating the exact same
string. Intuitively, this can be understood by noting that the
position of the empty string is irrelevant—it does not matter
whether it comes before or after the nonterminal. Figure 1
shows the different parsing moves that an LITG can perform,
moving from one nonterminal A covering a contiguous span in
each sentence (abcd and wxyz respectively), to another non-
terminal B covering another span pair (gray box), by emit-
ting some terminal symbols. When the nonterminal covers two
empty spans, it can be rewritten to the empty biterminal only,
eliminating the nonterminal and halting the process.

By lowering the generative capacity of the grammar in this
way, we get an increase in efficiency, allowing LITGs to parse
sentence pairs in O(n4) time, which is further reducible to
O(n) time by approximating the search [1].

Also note that the biterminals are very much integrated into
the rules, making it hard to construct a stochastic LITG that de-
fines a probability distribution over the biterminals. In ITGs, this
can be achieved by introducing a dedicated preterminal symbol
into the set of nonterminals. The only job of the preterminal
symbol is to rewrite into biterminal symbols. Since LITGs have
no means of differentiating preterminals from nonterminals, in-
troducing such a symbol would violate the linearity constraint,
thereby effectively making it an ITG. To solve this, we separate
the class of preterminals from the class of nonterminals, creat-
ing the class of preterminalized LITGs.

Definition 3. A PLITG over languages L1 and L2 is a tuple
G = 〈N,P,Σ,∆, S,R〉, where N , Σ, ∆ and S are the same
as for ITGs, P is a finite, nonempty set of preterminal symbols
and R is a finite, nonempty set of preterminal linear inversion
transduction rules on the forms:

A→ [BY ], A→ 〈BY 〉, A→ ε/ε,

A→ [Y B], A→ 〈Y B〉, X → a/x

where A,B ∈ N , X,Y ∈ P , a ∈ Σ∗ and x ∈ ∆∗.

The class of PLITGs generates the same class of transduc-
tions as LTGs and LITGs, but the stochastic version (SPLITGs)
allows for a single probability distribution to be defined over
the biterminals, which we will exploit for bilexica construction.
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(a) Valid extensions

(b) Valid extension with singleton

(c) Invalid extensions

Figure 2: Examples of valid and invalid extensions for an LITG.

3. Phrasal SPLITGs
Learning stochastic phrasal transduction grammars from cor-
pora is a daunting task. Machine learning algorithms such as
expectation maximization (EM) [4], which we will use in this
paper, are restricted to setting the weights of the parameters of
the model. This means that the parameters have to be enumer-
ated before training begins. For a stochastic phrasal transduc-
tion grammar, every span inL1 combined with every span inL2

is a parameter. By only considering the ones that are observed
in the training corpus, the number can be significantly reduced,
but still remains intractably large.

Our solution to the problem is to start with a token based
SPLITG, and iteratively add larger spans that are observed, not
only in the training corpus, but also in the parse forest of the
training corpus according to the grammar we have learned so
far. We thus start by learning a token based grammar from
the training corpus, which we stabilize with a few iterations of
EM training. We then inspect the parse forest, and single out
all sequences of two rules where the same results could have
been achieved with one valid SPLITG rule. These hypothetical
rules are then simply incorporated into the grammar. The new
grammar with larger translation units is then stabilized, at which
point we can either repeat the process to get even larger bitermi-
nals, or be satisfied with our grammar. Each round of enlarge-
ments doubles the maximum length of the terminal symbols in
the grammar. By extending the terminal productions to produce
multiple symbols rather than single symbols, the grammar be-
comes phrasal, making it a phrasal SPLITG.

The extension process is illustrated in Figure 2. Although
the illustration includes LITG rules rather than PLITG rules,
these can be deterministically recovered from the LITG rules.

4. Probabilistic phrasal bilexicon
extraction using phrasal SPLITGs

A probabilistic bilexicon is a translation lexicon where the en-
tries are associated with probabilities, and a phrasal bilexicon

contains multi-token entries with multi-token translations. A
probabilistic phrasal bilexicon is an integral part of any speech
translation system, under the name phrase table. These phrase
tables are extracted as all possible L1 spans combined with all
possible L2 spans from a corpus that are consistent with a word
alignment over that corpus. This process thus requires the train-
ing corpus to be word aligned.

The constraint that the phrases need to be consistent with
a word alignment is similar to our constraint that phrasal biter-
minals need to be observed in the parse forest of the corpus.
Since each parse tree in the parse forest assigns an alignment
between the two sentences being parsed, the phrasal bitermi-
nals learned by observing rule sequences in the parse forest,
encode a fragment of this alignment information. Rather than
being constrained to exactly one word alignment per sentence
pair, as the standard approach is, our approach integrates over
all the alignments of the entire parse forest.

There is in other words a similarity between the biterminals
in a phrasal SPLITG and the phrases in a phrase table. One dif-
ference is that the phrase pairs in a phrase table are scored with
five different scores: φ(f |e), φ(e|f), lex(f |e), lex(e|f) and
a constant. The letters e and f are used to denote the output
language phrase and input language phrase respectively, φ rep-
resents the translation probability: how often was f translated
into e, and lex represents the lexical probability: how well do
the tokens in f correspond to the tokens in e. The constant is
there to allow the decoder to add a cost every time a phrase en-
try is used. This makes it prefer larger chunks, which are more
likely to be correct, since they were actually observed in the
training corpus.

To build a phrase table from a SPLITG, we start with the
lexical rules we learned, and assume that they constitute the en-
tries. To score the entries, we use the rule probability as a basis
for the φ score, marginalizing the input and output phrase to
compute the two conditional scores. To mimic the lex score,
we parse the entry as if it was a sentence pair. This gives us a
score of how likely the string pair is given the grammar, which
intuitively corresponds well to the concept of a lexical score.
Again we marginalize over the two phrases to make two condi-
tional scores rather than one joint.

This represents a much more principled approach to prob-
abilistic phrasal bilexicon extraction that incorporates word
alignment and phrase extraction into a joint process rather than
a pipeline of distinct steps.

5. Experimental setup
To test the quality of the extracted probabilistic phrasal bilex-
icon, we will use a speech translation task. We selected the
IWSLT07 Chinese–English translation task [5], and a standard
phrase-based statistical machine translation system [6] as our
baseline. To build the baseline we used the freely available
Moses toolkit [7], with standard training settings, and an SRI
trigram language model [8]. To compare systems we use BLEU
[9].

This baseline represents the state-of-the art. Our system
will be based on a phrase table extracted from a phrasal SPLITG
that was learned from the same data as the baseline was trained
on. To further investigate the differences between the two ap-
proaches we will create several hybrid phrase tables, where fea-
tures computed for the SPLITG phrase table are added to the
baseline phrase table. The reason for augmenting the baseline
system rather than our own experimental system, is to minimize
the model mismatch between our training regime and the Moses
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System BLEU

Moses (baseline) 27.36
SPLITG 21.08
Moses + SPLITG indicator feature 27.08
Moses + SPLITG conditional scores 28.03
Moses + SPLITG joint scores 28.20

Table 1: Results from the experiments.

decoder.
To learn the phrasal SPLITG we will use the approximate

parsing described in [1] with a beam size of b = 25, which gives
a good trade-off between efficiency and search error avoidance.
We will do five iterations of EM training between the extension
rounds, and a total of three extension rounds. We thus run a
total of 20 iterations of EM. Three extension rounds means that
the longest possible phrase length is 23 = 8 tokens, which is
comparable to the baseline system.

To combine the phrase tables, we will start out with the
baseline phrase table, and add features from the SPLITG phrase
table for phrase pairs that exist in both tables. For phrase pairs
that exist only in the baseline table, we will consider the added
features to have a value of zero. For phrase pairs that exist only
in the SPLITG table, we do nothing.

We will compute three different combined phrase tables:
one with all the computed features of the SPLITG table, one
with the joint rather than conditional scores from the SPLITG
table and one with an indicator feature that takes the value one
if the phrase pair occurs in the SPLITG table, and zero if it does
not.

6. Results
After running the experiment outlined in Section 5, we have
five different phrase tables that we can plug into our speech
translation system and test. The results of this is found in Ta-
ble 1. The pure SPLITG based system performs comparatively
poorly, which we would like to ascribe to the mismatch between
the training and decoding models—the grammar was not con-
structed to be used in a surface-based speech translation system
in the first place, so trying to shoe horn it into such a system is
suboptimal.

Whether a phrase pair is present in the SPLITG phrase table
or not (indicator feature in Table 1) seems to contain too little
information. It is reasonable to believe that the low probabil-
ity phrase pairs in the SPLITG phrase table represent a sparse
collection of the actual low probability phrase pairs, the mem-
bership in the table is thus highly arbitrary for low probability
phrase pairs. The fact that adding this piece of information de-
grades performance indicates that the feature does indeed con-
fuse rather than aid the speech translation system.

When taking the probabilities that were learned during
grammar induction—rather than just the presence of the phrase
pairs discovered—into account, we see a consistent improve-
ment. There is, in other words, some information that the
SPLITG system was able to pick up which the baseline system
did not. The fact that the system with fewer features (joint
scores in Table 1) outperformed the one with more features
(conditional scores in Table 1) seems counter intuitive at first.
We believe that there are two factors that explain this: the fact
that the conditional scores are synthesized from the joint scores,
and the parameter tuning employed (minimum error rate train-

ing, MERT). The first explanation, that the conditional scores are
synthesized rather than observed, implies that the conditional
model has exactly the same information as the joint model, just
phrased differently. Taking this line of reasoning to its logical
conclusion, we should expect the same results with both mod-
els, which brings us to the second explanation: MERT. In gen-
eral, MERT is prone to getting stuck in local optima, which is
combated with random restarts. This effect becomes more se-
vere the more features MERT has to tune, which could explain
why the more feature rich model performs worse. The sub-
optimal tuning could have been worth it if it would allow us
to use some discriminating features. In fact, adding four extra
features to the baseline system does increase performance, just
not as much as adding two features with the same information
content.

7. Conclusions
In summary, we have presented a novel, grammar-based method
for extracting probabilistic phrasal bilingual lexica, and suc-
cessfully shown that the learned lexica contain information that
the state-of-the-art baseline speech translation system failed to
uncover, giving a significant boost in speech translation quality.
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