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Abstract

We propose a new algorithm to induce in-
version transduction grammars, in which a
crosslingual semantic frame based objective
function is injected as confidence weighting in
the early stages of statistical machine transla-
tion training. Unlike recent work on improv-
ing translation adequacy that uses a mono-
lingual semantic frame based objective func-
tion to drive the tuning of loglinear mixture
weights in the late stages of statistical machine
translation training, our bilingual approach
incorporates the semantic objective during
the actual learning of the translation model’s
structure. Our approach assigns higher confi-
dence to training examples in which the se-
mantic frames in the input language more
closely match the semantic frames of the out-
put language, as predicted automatically by
XMEANT, the crosslingual semantic frame
based machine translation evaluation metric.
We chose to apply this approach to induce in-
version transduction grammars (ITGs), since
ITG alignments prune a large majority of the
space of possible alignments, while at the same
time empirically fully covering all the crosslin-
gual semantic frame alternations of the type
we are using for confidence weighting. Results
show that boosting semantically compatible
training examples in I'TG induction improves
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the translation performance compared to ei-
ther traditional GIZA++ alignment or con-
ventional ITG alignment based approaches for
phrase based statistical machine translation.

1 Introduction

In this paper we introduce an approach that uses a se-
mantic based objective function at a very early stage
of training statistical machine translation (SMT) sys-
tems, more precisely, during the actual learning of
the translation model’s structure. Recent research has
shown that including a semantic based objective func-
tion in the training pipeline, such as tuning against
semantic based metrics like MEANT (Lo et al., 2012),
improves the translation adequacy (Lo et al., 2013a;
Lo and Wu, 2013a; Lo et al., 2013b; Beloucif et al.,
2014). We show that integrating a semantic based
objective function much earlier in the training pro-
duces a more semantically correct alignment. Our ap-
proach is also motivated by the fact that XMEANT
(Lo et al., 2014), a crosslingual semantic evaluation
metric, has been shown to correlate better with hu-
man adequacy judgement than most commonly used
evaluation metrics under some conditions. Our algo-
rithm assigns a higher confidence to training examples
in which XMEANT performs well, in other words, for
bisentences where the semantic frames in the input
language match more closely the semantic frames of
the output language. We also show that this way of
inducing ITGs does not only improve the translation
quality, but it also produces better alignments in com-
parison to conventional ITG alignments and to the tra-
ditional GIZA++ (Och and Ney, 2000) alignments.
Applying this approach to induce inversion trans-
duction grammars is also motivated by the fact
that ITG alignments have previously been empirically
shown to cover almost all crosslingual semantic frame



alternations, even though they rule out the majority
of incorrect alignments (Addanki et al., 2012). We
show that using a confidence-weighting algorithm for
ITG induction not only helps further narrow down the
ITGs constraints even more, but also avoids losing rele-
vant portions of the search space, thus learning a more
semantically driven word alignment. We deliberately
train our approach using a relatively small data set to
show that a semantic based learning can also help a
lot with low resource languages in comparison to exist-
ing learning methods. Although Chinese is not a low
resource language, we are deliberately simulating low
resource conditions in our experiments by training on
a relatively small parallel data set.

2 Related work
2.1 Crosslingual evaluation metric XMEANT

Our approach implements the principle that a good
translation is one where a human can easily under-
stand the general meaning of the output sentence as
captured by the basic event structure: who did what to
whom, when, where and why as defined by Pradhan et
al. (2004). The MEANT family of metrics are seman-
tic evaluation metrics that have been shown to cor-
relate more closely with human adequacy judgement
than the most commonly used surface based metrics
(Lo and Wu, 2011, 2012; Lo et al., 2012; Lo and Wu,
2013b; Machacek and Bojar, 2013). MEANT com-
pares the MT output sentence against the provided
reference translations, and produces a score to mea-
sure the degree of similarity between their semantic
frame structures. Our new approach is encouraged by
the fact that many previous studies have empirically
shown that integrating semantic role labeling into the
training pipeline by tuning against MEANT improves
the translation adequacy (Lo et al., 2013a; Lo and Wu,
2013a; Lo et al., 2013b; Beloucif et al., 2014)

XMEANT (Lo et al., 2014) is a crosslingual ver-
sion of the semantic evaluation metric MEANT. It has
been shown in some cases to correlate even better with
human adequacy judgments than MEANT, and also
better than most evaluation metrics like BLEU (Pa-
pineni et al., 2002), NIST (Doddington, 2002), ME-
TEOR (Banerjee and Lavie, 2005), CDER (Leusch
et al., 2006), WER, (NieBen et al., 2000), and TER
(Snover et al., 2006).

Unlike MEANT which requires expensive man-
made reference translations, XMEANT uses seman-
tically parsed foreign language input to evaluate the
MT translation output. MEANT measures lexical
similarity using a monolingual context vector model,
whereas XMEANT substitutes simple crosslingual lex-
ical translation probabilities. Figure 1 describes the
XMEANT algorithm. FEach token of the role fillers

Algorithm XMEANT

1. Apply an input language automatic shallow semantic parser to the foreign input
and an output language automatic shallow semantic parser to the MT output.

N

Apply the maximum weighted bipartite matching algorithm to align the semantic
frames between the foreign input and the MT output according to the lexical
translation probabilities of the predicates.

©®

For each pair of the aligned frames, apply the maximum weighted bipartite mat-
ching algorithm to align the arguments between the foreign input and the MT
output according to the aggregated phrasal translation probabilities of the
role fillers.

=

Compute the weighted f-score over the matching role labels of these aligned pre-
dicates and role fillers according to the definitions similar to MEANT.

Figure 1: XMEANT algorithm

in the input string is aligned to the token of the role
fillers in the output string that has the maximum lex-
ical translation probability. ~XMEANT crosslingual
phrasal similarities are computed as follows (Lo et al.,
2014) :
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where the joint probability p is the harmonic mean of
the two directions of the translation table ¢ trained us-
ing IBM model 1 (Brown et al., 1993). prec, ¢ is the
precision and rece ¢ is the recall of the phrasal similar-
ities of the role fillers. s; prea and s;; are the f-scores
of the phrasal similarities of the predicates and role
fillers of the arguments of type j between the input
and the MT output.

Our approach takes advantage of the fact that
XMEANT judges the extent to which the semantic
frames of the input match those of the output, using
these highly informative scores as confidence weights
for training examples. We show that by using this
convenient method to inject a crosslingual semantic
reward/error signal into the ITG induction algorithm
enables us not only to learn more semantically based
correlations between the two languages, but also that
this semantic bias helps under low resource conditions.



2.2 Alignment

Conventional alignment algorithms such as IBM mod-
els (Brown et al., 1990) and HMM models (Vogel et
al., 1996) are flat and directed. They need two sep-
arate asymmetric alignments to form a single bidirec-
tional alignment, then use heuristics to harmonize the
two directed alignments, as implemented in GIZA++
(Och and Ney, 2000). This means that there is no
model that considers the final bidirectional alignment
where the translation system is trained on to be opti-
mal. Transduction grammars (Wu, 1997), on the other
hand, have proven that learning word alignments using
a system that is compositionally structured can pro-
vide optimal bidirectional alignments. Although this
structured optimality comes at a higher cost in terms
of time complexity, it allows preexisting structured in-
formation to be incorporated into the model.

The generative capacity of ITGs puts in place ef-
ficient and universal hypothesis language translation
constraints. The ITG hypothesis assumes that sen-
tence translations between any two languages can be
accomplished within the expressivenes of the ITG for-
malism which results in learning generalizations over
bilingual relations without exploding the model com-
plexity.  Saers and Wu (2009) proposed a better
method of producing word alignment by training inver-
sion transduction grammars (Wu, 1997). One problem
encountered with such model was the complexity of the
biparsing algorithm which runs in O(n®) . A faster al-
gorithm that runs in O(n3) (Saers et al., 2010) was
proposed later. Zhang and Gildea (2005) presented
a version of ITG where rule probabilities are lexical-
ized throughout the synchronous parse tree for efficient
training which helped align sentences up to 15 words.

Some of the previous work on word alignment used
morphological and syntactic features (De Gispert et
al., 2006). Some log linear models have been pro-
posed to incorporate those features (Dyer et al., 2011).
The problem with these approaches is that they re-
quire language specific knowledge and that they al-
ways work better on more morphologically rich lan-
guages. A few studies that approximately integrate
semantic knowledge in computing word alignment are
proposed by Ma et al. (2011) and Songyot and Chi-
ang (2014). However, the former needs to have a prior
word alignment learned on lexical words. The authors
in the latter model proposed a semantic oriented word
alignment. However, word similarities first need to be
extracted from monolingual data, and are then used
to produce alignments.

3 Confidence-weighted training algo-
rithm

We implemented a token based bracketing inversion
transduction grammars (BITG) as our ITG system.
BITGs have been proven to produce a good result
by only using one nonterminal category (Saers et al.,
2009). The algorithm we propose in this paper uses
the crosslingual semantic evaluation metric XMEANT
as a confidence weighting metric in the early stages
of statistical machine translation training. We modify
the BITG induction algorithm of Saers et al. (2009),
weighting training examples using the confidence as
judged by XMEANT, i.e., we weight training exam-
ples according to how closely the semantic frames in
the input language match the semantic frames of the
output language semantic frame. In this way we are
biasing the bracketing inversion transduction grammar
(BITG) towards preferring bilingual parses that better
fit XMEANT’s crosslingual semantic frames.

We contrast our new proposed model to the token
based BITG system. We initialize both ITG based
models with uniform structural probabilities, setting
aside half of the probability mass for lexical rules. This
probability mass is distributed among the lexical rules
according to co-occurrence counts from the training
data, assuming each sentence to contain one empty
token to account for singletons. These initial prob-
abilities are refined with 10 iterations of expectation
maximization where the expectation step is calculated
using beam pruned parsing (Saers et al., 2009) with a
beam width of 100. On the last iteration, we extract
the alignments imposed by the Viterbi parses as the
word alignments outputted by the system.

The rule probability function in the BITG induc-
tion algorithm p is defined using fixed probabilities
for the structural rules, and a translation table ¢ that
is trained using IBM model 1 (Brown et al., 1993) in
both directions. To calculate the inside probability

of a pair of segments, P(A:*>x|G), we use the

algorithm described in Saers et al. (2009) for the
training.

4 Experimental Setup
4.1 Data

Our experiments are aimed at showing that inject-
ing a crosslingual semantic objective function into
a confidence-weighted ITG induction algorithm into
early stage learning of SMT systems can help us re-
duce the need for extremely large corpora as typically
used in SMT training. Although Chinese is not a low
resource language, we purposely try to simulate low



Table 1: Translation quality comparing three methods used to train Moses hierarchical PBSMT for Chinese-

English MT
System BLEU | METEOR | TER | WER | PER | CDER
Giza++ based alignment 23.02 | 4.14 59.95 | 60.52 | 55.58 | 59.14
ITG based alignment 21.82 | 4.32 57.86 | 58.68 | 53.90 | 57.38
Semantic confidence-weighted ITG based alignment | 28.97 | 4.35 57.80 | 58.55 | 53.50 | 57.14

resource conditions, by using a relatively small cor-
pus (IWSLTO07). The training set contains 39,953 sen-
tences. The dev set and test set were the same for all
systems in order to keep the experiments comparable.

4.2 Baselines

We compare the performance of our proposed
confidence-weighted alignment to the conventional
ITG alignment and to the traditional GIZA++
baseline with grow-diag-final-and to harmonize both
alignment directions. We also perform a grid search
over the hyper parameters in our proposed model to
find the optimal settings.

We tested the different alignments described above
by using the standard Moses toolkit (Koehn et al.,
2007), and a 6-gram language model learned with the
SRI language model toolkit (Stolcke, 2002) to train
our model.

5 Results

We compared the performance of the semanti-
cally confidence-weighted ITG alignment against the
GIZA++ baseline and the conventional BITG align-
ments. We evaluated our MT output using a broad
range of metrics including BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), CDER
(Leusch et al., 2006), WER (Nieflen et al., 2000), and
TER (Snover et al., 2006). We note that the alignment
based on our proposed algorithm helps to achieve high
scores in terms of surface based metrics in comparison
to both conventional ITG and GIZA++ alignment.
Table 1 shows that our proposed algorithm produces
improvements in terms of nearly all metrics, compared
to the two conventional alignments. This shows that
we should be more focused on incorporating semantic
information during the actual learning of the transla-
tion model’s structure than just tuning against a se-
mantic objective function.

Figure 2 shows examples extracted from our trans-
lated data, it compares the translations obtained by
the three discussed alignments. We see from the exam-
ples that ITG based models can produce semantically
more accurate output compared to GIZA++ based
alignment. Example 1 shows an interesting example
where the confidence-weighted based system learns a

more accurate and fluent translation of the input sen-
tence in comparison to both other systems. Example
2 shows an example where learning the right semantic
structure can not only produce better adequacy, but
also leads to better fluency for low resource languages.
The semantic frame based objective function that we
used shows that by capturing the right structure while
learning the alignment, we can produce better trans-
lations even when using a very small data set. This
also shows, that semantic based heuristics are needed
for more disambiguation, on the other hand, GIZA++
based alignment fails to completely capture any mean-
ing once again.

6 Conclusion

In this paper we have introduced a novel crosslingual
semantically driven algorithm for inversion transduc-
tion grammar induction, where we measure the confi-
dence of the training set based on an XMEANT objec-
tive and boost confidence on training examples accord-
ingly. Results suggest that this method of incorporat-
ing a semantic frame based objective during early stage
of learning a translation model’s structure for SMT
helps to improve both the fluency and the adequacy
of the MT translation, compared to ordinary ITG and
to conventional GIZA++ based induction methods.
The performance of our model was tested upon a
Moses hierarchical translation baseline. We noted that
systems using our early stage semantically based learn-
ing approach outperform both conventional GIZA++
and BITG alignment systems in terms of a broad
range of metrics including BLEU, METEOR, TER,
WER, PER and CDER for Chinese to English trans-
lations. We believe this new approach to semantically
confidence-weighted training could be conveniently ap-
plied to numerous SMT approaches aside from ours.
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Example 1

Input: BEXRASDIEAET A USEH @A 2K BH KR .
Gloss: I inthis company works nine years so this year have four week paid vacation.
Ref: I have been with our Company for nine years and | am entitled to four weeks of paid leave this year.
GIZA++: I work at this company nine years have four weeks VACATION this year.
ITG: I work at this company nine years by four weeks paid vacation this year.
Confidence-weighted: 1 work in this nine years, so let 's have four weeks paid vacation.

Example 2

Input: RELEHE ?

Gloss: canteen at where?

Ref: where 's the dining room ?

GIZA++: refectory then where ?

ITG: the refectory where ?

Confidence-weighted: where is the refectory ?

Figure 2: Examples comparing the output of the three discussed alignments
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