
Principles of Programming Languages

COMP3031: Functional Programming in
Scheme (and LISP)

Prof. Dekai Wu

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong, China

Fall 2012

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part I

Introduction

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Models of Computation

In the 1930’s, long before digital computers were invented,
logicians studied abstract concepts of computation.

Two simple models of computation:
1 Alan Turing’s Turing machines — based on an updatable store

(memory).
2 Alonzo Church’s lambda calculus — based on the

mathematical concept of functions.

The Turing machine idea has great influence on the design of
von Neumann computer architecture — used by most of
today’s common CPUs, and imperative programming
languages are designed to compute efficiently on the
architecture.

Lambda calculus is the foundation of functional programming
paradigm.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

von Neumann Computer Architecture

Control
Unit

Memory

I/O devices

results of operations instructions/data

CPU

ALU

Church-Turing Thesis
Any effective computation can be done in one of the two models.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Functional Programming Languages

Functions are first-class objects: They may be
(1) passed as arguments (2) returned as results (3) stored in
variables. (c.f. variables in imperative languages.)

Basic mode of computation: construction and application of
functions. (c.f. assignments in imperative languages.)

Principal control mechanism: recursive function applications.
(c.f. for-/while-loops in imperative languages.)

Freed from side-effects (for “pure” FPL).
Side-Effects: Operations which permanently change the value
of a variable (by assignments) or other observable objects
(e.g. by printing outputs).

Examples: LISP (LISt Processing), Scheme (a dialect of
LISP), ML (Meta Language), Haskell, Miranda, etc.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Scheme, a dialect of LISP

Scheme supports:

Static Scope: All identifier references can be resolved at
compile time (unlike LISP, which uses dynamic scoping).

Dynamic or Latent Typing: All variables are dynamically or
latently typed. Any variable can hold any type (imagine that
all variables are of the type Object). There are no explicit
type declarations. Many scripting languages take the same
approach (e.g., Perl, Python, JavaScript, Tcl, etc.)

Proper Tail-Recursion: Scheme (but not LISP)
implementations are required to be properly tail-recursive,
supporting an unbounded number of active tail calls.

Pure and Impure Functional Programming: Scheme/LISP
encourage pure functional programming, but impure functional
programming using some side-effects can also be done.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Scheme, a dialect of LISP (cont’d)

Scheme supports:

List-Oriented Programming: The main data structure in
Scheme/LISP is the list, implemented as a cons data structure
or cons tree. This versatile data structure can easily be
applied in many ways, and is easy to manipulate.

Programs as Data: The concrete syntax of Scheme/LISP is
almost the abstract syntax. All expressions are in prefix
notation and fully parenthesized. A big advantage is that
programs look just like cons list data structures, which makes
it easy to manipulate programs as if they were just data (so
programs can write and execute programs).

Interpreted: Traditionally, Scheme/LISP implementations all
provide an interpreter (and sometimes also a compiler),
making interactive debugging easy.

Automatic Garbage Collection: All implementations all
provide this feature, which Java inherits.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part II

Types and Values

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

8 Basic Types, 2 Composite Types

type example common operations

boolean #t, #f boolean?, not, and, or

integer 2, 0, 87 +, -, ∗, quotient, remainder, modulo

rational (/ 4 6) +, -, ∗, /, numerator, denominator

real 1.3, 300.1 real?, +, -, ∗, /, floor

complex 3+4i complex?, +, -, ∗, /

character #\a, #\space, #\newline char?

string ”hello” string?, string-ref, string-set!

symbol hello symbol?, eqv?, symbol->string

dotted pair (1 . ”yes”) list?, null?, cons, car, cdr

list (), (1 ”yes” 2.5)

(1 . (”yes” . (2.5 . ())))

vector #(1 ”yes” 2.5) vector?, vector-ref, vector-set!, vector

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Quoting

Syntax:

(quote < expression >)
’< expression >

• Quoting is needed to treat expressions as data.

> (define pi 3.14159)

> pi

3.14159

• A quoted item evaluates to itself. quote prevents eval from being
called:

> (quote pi)

pi

• An equivalent convenient shorthand is provided using ’ :

> ’pi

pi

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Quoting (cont’d)

• Unquoted, * represents the multiplication function:

> (define f *)

> (f 2 3)

6

• Quoted, ’* represents the symbol with spelling * :

> (define f ’*)

> (f 2 3)

ERROR: Wrong type to apply: *

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

List

Empty list: ’()

’(e1e2 . . . en) is an abbreviation for
(cons e1 (cons e2 (cons . . . (cons en ’()))))

cons is the list constructor

<new-list> = (cons <item> <list>)

(cons 1 (cons 2 (cons 3 ’())))

= (cons 1 (cons 2 ’(3)))

= (cons 1 ’(2 3))

= ’(1 2 3)

Equality on 2 lists is item-by-item.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

List Operators

cons operator: creates a dotted pair of the two operands

car operator: returns the first element of a dotted pair (cons
cell)

cdr operator: returns the second element of a dotted pair
(cons cell)

append operator: returns a list consisting of the elements of
the first list followed by the elements of the other lists

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

List Examples

> (car ’(1 2 3 4))

1

> (cdr ’(1 2 3 4))

(2 3 4)

> (cons (car ’(1 2 3 4)) (cdr ’(1 2 3 4)))

(1 2 3 4)

> (append ’(5 6) (cdr ’(1 2 3 4)))

(5 6 2 3 4)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Composite Type: Vector

> (vector 4 true cat)

#(4 true cat)

> (if (equal? 3 8) "X" (vector "Y" 9.5/0.5 (quotient 5 2)))

#("Y" 19.0 2)

> (equal? (vector (modulo 14 3) (not #f))

(vector (+ 1 1) #t))

#t

> (vector-ref (vector "for" "your" "info") 1)

"your"

Ordered n-tuple: #(e1e2 . . . en).

The n expressions may be of mixed types.

2 n-tuples are equal if their corresponding components are
equal.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Composite Type: Vector ..

“(vector-ref myvector k)” is the item selection operator.

“(vector-length myvector)” returns n.

“(vector #(e1e2 . . . en))” returns a newly constructed vector
containing the given elements.

“(make-vector n fill)” returns a newly allocated vector of n
elements. If the optional second argument is given, then each
element is initialized to fill.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Identifiers

Most identifiers allowed by other programming languages are also
acceptable to Scheme. The precise rules for forming identifiers vary
among implementations of Scheme, but in all implementations a
sequence of letters, digits, and “extended alphabetic characters”
that begins with a character that cannot begin a number is an
identifier. In addition, +, -, and ... are identifiers. Here are some
examples of identifiers:

lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within identifiers as if
they were letters. The following are extended alphabetic
characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Identifiers (cont’d)

Identifiers have two uses within Scheme programs:

Any identifier may be used as a variable or as a syntactic
keyword.

When an identifier appears as a literal or within a literal, it is
being used to denote a symbol.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Identifiers: Value Binding

Syntax: (define < identifier > < expression >)

> (define a_df (+ 3 2)) ; c.f. int a_df = 3+2; in C++

> a_df

5

> (define a’a (string-append "Albert" " " "Einstein"))

> a’a

"Albert Einstein"

> (define a1b2 2)

> a1b2

2

> (define +++$$$ (* 9 3)) ; may hold integral value

> +++$$$

27

> (+ +++$$$ +++$$$) ; Though you don’t want to do that

54
Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part III

Scheme Functions

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda: Constructing Anonymous Functions

Syntax: (lambda (<formal parameters>) <body>)

An anonymous function is a function without a name.

lambda returnes a newly constructed anonymous
parameterized function value.

<formal parameters> is a sequence of parameter names.

<body> is an expression, possibly containing occurrences of
the parameter names.

Used when only a locally defined function is needed.

> (lambda (x) (* x x)) ; constructing anonymous function

#<procedure #f (x)>

> ((lambda (x) (* x x)) 4) ; applying anonymous function

16

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Defining Named Functions

To define a named function, you simply have to bind some
identifier (which will be the function name) to a function
value.

Parameter passing method: Call-By-Value.

> (define square (lambda (x) (* x x)))

> square

#<procedure square (x)>

> (square 4)

16

> (define first (lambda (x y) x))

> (first 3 "man")

3

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Convenient “Syntactic Sugar” for Named Functions

Syntax: (define (<identifier> <formal-parameters>) <body>)

> (define (square x) (* x x))

> square

#<procedure square (x)>

> (square 4)

16

> (define (first x y) x)

> (first 3 "man")

3

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Higher-Order Functions (I)

Functions taking functions as arguments:

> (define (square x) (* x x))

> (define (twice x) (* 2 x))

> (define (apply5 f) (apply f ’(5)))

> (apply5 square)

25

> (define (apply-to-twice-x f x) (apply f (list (twice x))))

> (apply-to-twice-x square 3)

36

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Higher-Order Functions (II)

Functions returning function:

> (define (sq_or_twice x) (if (> x 0) square twice))

> (apply (sq_or_twice 2) ’(5))

25

> (sq_or_twice 2)

#<procedure square (x)>

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus

Recall this example:

> (lambda (x) (* x x)) ; constructing anonymous function

#<procedure #f (x)>

> ((lambda (x) (* x x)) 4) ; applying anonymous function

16

In the lambda calculus, which was the origin of lambda in
LISP/Scheme, the same two lines would be written:

(λx . (x ∗ x))

(λx . (x ∗ x)) 4

We say that applying λx to the expression x ∗ x performs a lambda
abstraction.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Syntactic Conventions (I)

A couple conventions for the lambda calculus make it much more
readable.

First, parentheses may be dropped from (MN) and (λx . M).

Notice that function application is an operator; the operator is left
associative. E.g., xyz is an abbreviation for ((xy) z). Also, function
application has higher precedence than lambda abstraction, so

λx . x ∗ x

is an abbreviation for

(λx . (x ∗ x))

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Syntactic Conventions (I..)

Quiz: What is the abbreviated syntax for this?

((λx . (x ∗ x)) 4)

Answer:

(λx . x ∗ x) 4

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Syntactic Conventions (II)

Second, a sequence of consecutive lambda abstractions, as in

λx . λy . λz . M

can be written with a single lambda, as in

λxyz . M

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Syntactic Conventions (II..)

Quiz: Note that λxyz . M corresponds to what we normally think
of as a function with three parameters. If you instead write it as
λx . λy . λz . M, then what is the meaning of this:

(λx . λy . λz . M) 8

Answer: The value of this expression is a function of two
parameters, where y and z remain free variables, but x has already
been bound to the value 8.

The practice of breaking up multi-parameter functions into
single-parameter functions like this in programming is called
currying a function (after Tim Curry who promoted this practice,
widely found in functional languages like ML and Haskell).

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Substitution

The result of applying an abstraction (λx . M) to an argument
N is formalized as substitution of N for x in M, written
M [x := N].

Informally, N replaces all free occurrences of x in M.

Caution! A fully correct definition of substitution is tricky
(there was a long history of not-quite-adequate definitions).
This is beyond our scope here.

Here is an almost-correct definition:
1 Suppose the free variables of N have no bound occurrences in

M. Then the term M [x := N] is formed by replacing all free
occurrences of x in M by N.

2 Otherwise, suppose variable y is free in N and bound in M.
Consistently replace the binding and corresponding bound
occurrences of y in M by some fresh variable z . Repeat the
renaming of bound variables in M until case 1 applies, then
proceed as in case 1.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Substitution examples

In the following examples, M has no bound occurrences of x , so N
replaces all occurrences of x in M to form M [x := N]:

x [x := u] = u

(x x) [x := u] = (u u)

(x y) [x := u] = (u y)

(x u) [x := u] = (u u)

(x u) [x := (λx . x)] = ((λx . x) u)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Substitution examples..

In the following examples, M has no free occurrences of x , so
M [x := N] is M itself:

y [x := u] = y

(y z) [x := u] = (y z)

(λy . y) [x := u] = (λy . y)

(λx . x) [x := u] = (λx . x)

y [x := (λx . x)] = y

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Lambda Calculus: Substitution examples...

In the following examples, free variable u in N has bound
occurrences in M, so M [x := N] is formed by first renaming the
bound occurrences of u in M:

(λu. x) [x := u] = (λz . x) [x := u] = (λz . u)

(λu. u) [x := u] = (λz . z) [x := u] = (λz . z)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

List Function: map

The built-in library function map() has 2 or more arguments:
a function <func> and one or more lists.

It applies function <func> to the elements of the lists as
follows.

(map <func> <list1 > <list2 > ...)

<func> must be a function taking as many arguments as
there are lists and returning a single value. If more than one
list is given, then they must all be the same length. Map
applies <func> element-wise to the elements of the lists and
returns a list of the results, in order. The dynamic order in
which <func> is applied to the elements of the lists is
unspecified.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

map: Examples

> (define (odd x) (equal? (modulo x 2) 1))

> (map odd ’(1 2 3))

(#t #f #t)

> (map cadr ’((a b) (d e) (g h)))

(b e h)

> (map (lambda (n) (expt n n))

’(1 2 3 4 5))

(1 4 27 256 3125)

> (map + ’(1 2 3) ’(4 5 6))

(5 7 9)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part IV

Static Scope: let Expression

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

let Expression

(let
((<1st-identifier> < E1 >)
(<2nd-identifier> < E2 >)
. . .)

<body-expression>)

c.f. Declaration of local variables in C++

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

let Example

> (define z

(let ((x 3)

(y 5))

(+ (* x x) (* 3 y))))

> z

24

• As spaces are immaterial, the statement may as well be written
all in one single line as follows:

> (define z (let ((x 3) (y 5)) (+ (* x x) (* 3 y))))

• Quiz: What is the relationship between let and lambda?

> (define z

((lambda (x y) (+ (* x x) (* 3 y)))

3 5))

> z

24

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Nested let Example

> (let ((x 3.0)

(y 5.0))

(let ((a (+ x y))

(b (- x y)))

(let ((f (* a b x))

(g (/ a b y)))

(/ f g))))

Quiz: What is the output?

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part V

Misc: Different Notions of Equality and

Equivalence

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Equality and Equivalence Predicates

Scheme (like LISP) offers various notions of equality and
equivalence, to support reference vs. value comparisons over
different types, with different efficiency tradeoffs.

=: Only applies to numeric values. (Very efficient.)

char=: Only applies to character values. (Very efficient.)

string=: Only applies to string values.

eq?: Merely compares references and booleans. (Very
efficient; essentially just pointer comparison.)

eqv?: Like eq? combined with = plus handles numeric and
character values. (Still efficient but slightly less so.)

equal?: Recursively compares the contents of pairs, vectors,
and strings, applying eqv? on other objects such as numbers
and symbols. A rule of thumb is that objects are generally
equal? if they print the same. (Least efficient. Why?)

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

eq? vs. eqv? vs. equal?

eq? eqv? equal?

(eq? ’() #f) ; cf LISP’s nil #f #f #f
(eq? ’a ’a) #t #t #t
(eq? ’a ’b) #f #f #f
(eq? 2 2) #t only if eqv? #t #t
(eq? #\a #\a) #t only if eqv? #t #t
(eq? ”” ””) unspecified unspecified #t
(eq? ”a” ”a”) #t iff eqv? unspecified #t
(eq? ’#() ’#()) unspecified unspecified #t
(eq? ’#(1 2) ’#(1 2)) #t iff eqv? unspecified #t
(eq? ’() ’()) #t #t #t
(eq? ’(a) ’(a)) unspecified unspecified #t
(eq? ’(b) (cdr ’(a b))) unspecified unspecified #t
(eq? (cons 1 2) (cons 1 2)) #f #f #t
(let ((x ’(a)))

(eq? x x)) #t #t #t
(eq? (lambda () ’a)

(lambda () ’b)) #f #f #f
(eq? (lambda (x) x)

(lambda (x) x)) unspecified unspecified unspecified
(let ((p (lambda (x) x)))

(eq? p p)) #t #t #t

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part VI

Misc: Value Binding

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Impure FP: Imperative-style Side-effects

(set! <variable> <expression>)
<expression> is evaluated, and the resulting value is
stored in the location to which <variable> is bound.

(set-car! <pair> <expression>)
Stores <expression> in the car field of <pair>.

(set-cdr! <pair> <expression>)
Stores <expression> in the cdr field of <pair>.

> (define x ’(b c)) | > (set! x ’(b c))

> (define y x) | > (eq? x y)

> (cadr x) | #f

c | > (equal? x y)

> (eq? x y) | #t

#t | > (set! y x)

> (set! x ’(d e f)) | > (eq? x y)

> (cadr x) | #t

e | > (set-cdr! x ’(g h))

> (eq? x y) | > y

#f | (b g h)
Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Value Binding and Environment

The phrase: “(define x ’(b c))” is called a binding;
it binds the variable x to a value ’(b c).

Can occur at top-level (global) or at the beginning of a
lambda or let body (local).

Don’t re-define variables; think of them as aliases or
constants. You can re-define existing variables at the top-level,
for convenience. Whenever an identifier is defined, it’s as if a
new identifier is “created” — it has nothing whatever to do
with any previously existing identifier of the same name.

The phrase: “(set! x ’(d e f))” rebinds the variable x to
another value ’(d e f).

Don’t use set! unless you are intentionally violating pure
functional programming.

Environment: the current set of ordered pairs (identifier,
value) that are visible.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Environment: Example (using SML syntax)

env:

val x = 17 : int

- val x = 17;

- val y = x;

- val x = true;
val x = true : bool

- val z = x;
val z = true : bool

x = true

x = 17

x = true
y = 17
x = 17

y = 17

x = 17

val y = 17 : int y = 17

x = 17

z = true

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Alias and Side Effects

Alias: When a data object is visible through more than one name
in a single referencing environment, each name is termed an alias.

Examples: passed parameters by reference in a function,
several pointers to the same object.

Pitfall: programs are harder to understand.

Side Effects: An operation has side effects if it makes changes
which persist after it returns.

Examples : A function changes its parameters or modifies
global variables (through assignments); printouts.

Pitfall : programs are harder to understand, evaluation order
of expressions becomes important.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Alias and Side Effects: Example

int x = 2, y = 5;
int Bad(int m) { return x+=m; }

void Swap(int∗ a, int∗ b)
{

int temp = ∗a; ∗a = ∗b; ∗b = temp;
x = 4;

}

int main()
{

int∗ z = &x;
int k = x ∗ Bad(7) + x;

printf("k = %d\n", k);
Swap(&x, &y);
printf("(x,y) = (%d,%d)\n", x, y);

}

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Part VII

Summary

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Summary

√
A task is achieved through applications of functions.

√
No pointers!

√
No coercion!

√
No side-effects!

√
Assignment is replaced by value binding.

√
Implicit type inference.

√
Implicit memory management: Objects are allocated
as needed, and deallocated when they become
inaccessible.

√
Pattern matching ⇒ program by examples.

√
Allow recursive definition of polymorphic datatypes.

√
Simple exception handling.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Summary: FP vs. IP

IP: Since IP languages are based on the von Neumann archi-
tecture, programmers must deal with the management
of variables, assignment of values to them, memory lo-
cations, and sometimes even memory allocations.

Adv: efficient computation

Disadv: laborious construction of programs

FP: Do not manipulate memory directly; no variables, no
assignments. Instead they work on values that are inde-
pendent of an underlying machine.

Adv: compact language, simple syntax, higher
level of programming

Disadv: efficiency is sacrificed

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

Summary: FP vs. IP ..

IP: Due to aliases and side effects, the effects of a subpro-
gram or a block cannot be determined in isolation from
the entire program.

FP: Since they only manipulate values, there are no aliases
nor side effects.

IP: Explicit memory management.
FP: Storage is allocated as necessary; and storage that be-

comes inaccessible is automatically deallocated and re-
claimed during garbage collection.

IP: The power comes from mimicking operations on the un-
derlying computer architecture with assignments, loops,
and jumps.

FP: The power comes from recursion and treating functions
as “first-class” values.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP3031 (Fall 2012, L1)

	Introduction
	Types and Values
	Scheme Functions
	Static Scope: let Expression
	Misc: Different Notions of Equality and Equivalence
	Misc: Value Binding
	Summary

