
Comp151

Const-ness

Watch out!

• The keyword const has many different meanings in C++,
depending on where it’s used.

const

• const in variable declarations: used to express a user-defined
constant – a value that can't be changed.

const float PI = 3.1416;
int = 1;
const int j = 2*i;

• Constant variables are usually written in capital letters.
• In the bad old days, constants were defined by the ugly #define

preprocessor directive:

#define PI 3.1416

• The const keyword can be regarded as a safety net for programmers.
If an object should not change, make it a const object; the compiler
will issue an error message if you try to change a const object.

Example: Constants of Basic Types

#include <iostream>
using namespace std;

const int i = 3;
const float PI = 3.1416;

void main()
{

for (int j = 1; j <= i; j++) {
cout << j << '‘*PI = '' << j * PI << endl;

}
}

A const MUST be initialized: the following is an error!

const int i; // will give a compile-time error

Example: Constant Objects
class Date { // not really a complete class definition
public:

Date(int, int, int); // day, month, year
int difference(const Date& newdate); // newdate is a const ref param
void add_month() { month += 1; };

private:
int year, month, day;

};

int main()
{

const Date job_start(1, 10, 1992);
Date x(27, 2, 2006);

// How long have I worked at UST in days?
cout << 'I have worked for '' << x.difference(job_start) << '' days.\n'';

// What about next month?
job_start.add_month(); // Error, but caught by compiler
cout << ''In a month I'll have worked '' << x.difference(job_start) << '' days.\n'';

}

const and Pointers

• Suppose that
const int i =5; int* pi;

and we were allowed to write
pi = &i; // actually, this is illegal

• Then it would be impossible for the compiler to stop
*pi = 10;

from changing i. This would violate the principle behind
const.

• C++ therefore does not allow a regular pointer to point to
a const. Only a special pointer to a const can point to a
const. If a regular pointer points to a const the compiler
will complain.

const int* pi;
pi = &i; // now this is ok

Pointer to a const

• const int* pi; is a pointer to a const. It is not a
pointer which is a const!
– pi can point to either a const or a non const.
– pi can be changed.
– *pi cannot be changed, i.e., it cannot be used in an assignment.
– Only a special pointer to a const can point to a const. If you try to

set a regular pointer to point to a const the compiler will complain.

int j = 10; const int i = 5;
const int* pi;
pi = &i; pi = &j; // ok: pi can change
pi = &i; *pi = 10; // error: *pi can not be assigned to
pi = &j; *pi = 10; // error: *pi cannot be assigned to (even though j can)
int* qi; qi = &i; // error: qi is not a pointer to const

const and Pointers

• We can also have a pointer that is a constant. This
implies nothing about the item being pointed to.

int i = 5;
int* const ri = &i; // const, so must be assigned

cout << *ri; // ok
*ri = 10; // ok

int j;
ri = &j; // compile-time error: cannot change ri

const and Pointers

• Finally, we can have both: a pointer to a constant that is also a
constant itself. That is, the pointer cannot be changed and the thing
it points to also cannot be changed.

const int i = 5;
const int* const ri = &i;
cout << ''*ri = '' << *ri << endl; // ok
*ri = 10; // compile-time error
int j; ri = &j; // compile-time error

• Note that such a pointer can point to a non const. It just can not
change it.

int k = 5;
const int* const ri = &k; // ok
*ri =10; // compile-time error

const and Pointers

• We have just seen three different types of pointers:
1. const int* pi;

// A pointer to a constant

2. int* const ri = &i;
// A pointer that is a constant

3. const int* const ri = &i;
// A pointer to a constant that is a constant itself

• The two distinct concepts to keep in mind are
– An object that is a constant cannot be changed.
– If pi is defined as a pointer to a const this means that *pi can

not be assigned to.

const and Pointers

• When using a pointer, two objects are involved:
the pointer itself, and the object pointed to.

– The syntax for pointers to constants and constant pointers can be
confusing.

The rule is that any const to the left of the * in a declaration refers to
the object pointed to; any const to the right of the * refers to the
pointer itself.

– It can be very helpful to read these declarations from right to left.

char c = 'Y';
char* const cpc = &c;
const char* pcc;
const char* const cpcc = &c;

const and References

• The syntax for references that refer to constants is just
like the syntax for pointers that refer to constants, and the
rules are the same:

char c = 'Y';
const char& rcc = c;
c = 'X';
rcc = 'Z'; // compile-time error

• But unlike pointers, there is no need for references that
are themselves constants. (Why?)

const and References:
References as Function Arguments

While there are 2 good reasons (what are they?) to pass an argument
as a reference, you can (and should!) express your intention to
leave a reference argument of your function unchanged by making it
const. This has 2 advantages:

1. If you accidentally try to modify the argument in your function, the
compiler will catch the error:

void cbr(LargeObj& a)
{

a.height += 10; // no compile-time error
}
void cbcr(const LargeObj& a)
{

a.height += 10; // compile-time error!
}

const and References:
References as Function Arguments (cont)

2. You can call a function that has a const reference parameter with
either const and non-const arguments. But a function that has a
non-const reference parameter can only be called with non-const
arguments.

void cbr(LargeObj& a) { cout << a.height; }
void cbcr(const LargeObj& a) { cout << a.height; }

int main() {
LargeObj dinosaur(50);
const LargeObj rocket(100);

cbr(dinosaur);
cbcr(dinosaur);
cbr(rocket); // compile-time error!
cbcr(rocket);

}

const Member Functions

• To indicate that a class member function does not modify the class
object, one can (and should!) place the const keyword after the
argument list.

class Date {
public:

int get_day() const { return day; }
int get_month() const { return month; }
void add_year(int y); // non-const function

private:
int year, month, day;

};

• For an acceptable software engineering standard, you should
always follow this practice to maintain const correctness (even
though you might find it much easier to compile working programs
without doing so!) This way the compiler can help catch bugs before
they do any damage.

Summary

• Acceptable software engineering practice demands that
you make the following const:

– objects that you don't intend to change

const double PI = 3.1415927;
const Date handover(1, 7,1997);

– function arguments that you don't intend to change

void print_height(const LargeObj& a) { cout << a.height(); }

– class member functions that do not change the object

int Date::get_day() const { return day; }

	Comp151
	Watch out!
	const
	Example: Constants of Basic Types
	Example: Constant Objects
	const and Pointers
	Pointer to a const
	const and Pointers
	const and Pointers
	const and Pointers
	const and Pointers
	const and References
	const and References:�References as Function Arguments
	const and References:�References as Function Arguments (cont)
	const Member Functions
	Summary

